1887

Abstract

A Gram-stain-negative, aerobic, short rod-shaped, non-motile bacterium (THG-S3), was isolated from desert soil. Growth occurred at 15–35 °C (optimum 28 °C), at pH 5–10 (optimum 7) and at 0–4 % NaCl (optimum 1 %). Based on 16S rRNA gene sequence analysis, the nearest phylogenetic neighbours of strain THG-S3 were identified as KCTC 42620 (99.0 %), KCTC 22672 (97.1 %), CCTCC AB 207166 (96.9 %), KCTC 12303 (96.9 %). Levels of relatedness among strain THG-S3 and other species were lower than 96.0 %. DNA–DNA hybridization values between strain THG-S3 and KCTC 42620, KCTC 22672, CCTCC AB 207166 and KCTC 12303 were 59.7 % (42.8 %, reciprocal analysis), 45.1 % (36.3 %), 34.7 % (25.1 %) and 15.1 % (12.3 %), respectively. The DNA G+C content of strain THG-S3 was 69 mol%. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and three unidentified lipids The quinone was ubiquinone-10. The major fatty acids were C, C ω6, C ω7 and summed feature 3 (C ω7 and/or C ω6). On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics and DNA–DNA hybridization data, strain THG-S3 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is THG-S3 (=KACC 19190=CGMCC 1.15959).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002197
2017-10-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/3806.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002197&mimeType=html&fmt=ahah

References

  1. Kwon KK, Woo JH, Yang SH, Kang JH, Kang SG et al. Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. Int J Syst Evol Microbiol 2007;57:2207–2211 [CrossRef][PubMed]
    [Google Scholar]
  2. Parte AC. LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  3. Kumar NR, Nair S, Langer S, Busse HJ, Kämpfer P et al. Altererythrobacter indicus sp. nov., isolated from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 2008;58:839–844[Crossref]
    [Google Scholar]
  4. Park SC, Baik KS, Choe HN, Lim CH, Kim HJ et al. Altererythrobacter namhicola sp. nov. and Altererythrobacter aestuarii sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011;61:709–715 [CrossRef][PubMed]
    [Google Scholar]
  5. Matsumoto M, Iwama D, Arakaki A, Tanaka A, Tanaka T et al. Altererythrobacter ishigakiensis sp. nov., an astaxanthin-producing bacterium isolated from a marine sediment. Int J Syst Evol Microbiol 2011;61:2956–2961 [CrossRef][PubMed]
    [Google Scholar]
  6. Lai Q, Yuan J, Shao Z. Altererythrobacter marinus sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2009;59:2973–2976 [CrossRef][PubMed]
    [Google Scholar]
  7. Xue X, Zhang K, Cai F, Dai J, Wang Y et al. Altererythrobacter xinjiangensis sp. nov., isolated from desert sand, and emended description of the genus Altererythrobacter. Int J Syst Evol Microbiol 2012;62:28–32 [CrossRef][PubMed]
    [Google Scholar]
  8. Nedashkovskaya OI, Cho SH, Joung Y, Joh K, Kim MN et al. Altererythrobacter troitsensis sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 2013;63:93–97 [CrossRef][PubMed]
    [Google Scholar]
  9. Fan ZY, Xiao YP, Hui W, Tian GR, Lee JS et al. Altererythrobacter dongtanensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2011;61:2035–2039 [CrossRef][PubMed]
    [Google Scholar]
  10. Kang JW, Kim MS, Lee JH, Baik KS, Seong CN et al. Altererythrobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2016;66:2491–2496[Crossref]
    [Google Scholar]
  11. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  13. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. CLUSTAL W and CLUSTAL X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  14. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  15. Kimura M. The Neutral Theory of Molecular Evolution UK: Cambridge University Press; 1984
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  18. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969;18:1–32 [CrossRef]
    [Google Scholar]
  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  21. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982;44:992–993[PubMed]
    [Google Scholar]
  22. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956;178:703 [CrossRef][PubMed]
    [Google Scholar]
  23. Yan ZF, Lin P, Chu X, Kook M, Li CT et al. Aeromicrobium halotolerans sp. nov., isolated from desert soil sample. Arch Microbiol 2016;198:423–427 [CrossRef][PubMed]
    [Google Scholar]
  24. Yan ZF, Trinh H, Moya G, Lin P, Li CT et al. Lysobacter rhizophilus sp. nov., isolated from rhizosphere soil of mugunghwa, the national flower of South Korea. Int J Syst Evol Microbiol 2016;66:4754–4759 [CrossRef][PubMed]
    [Google Scholar]
  25. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  26. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  27. Stabili L, Gravili C, Tredici SM, Piraino S, Talà A et al. Epibiotic Vibrio luminous bacteria isolated from some hydrozoa and bryozoa species. Microb Ecol 2008;56:625–636 [CrossRef][PubMed]
    [Google Scholar]
  28. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[Crossref]
    [Google Scholar]
  29. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  30. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980;48:459–470 [CrossRef]
    [Google Scholar]
  31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  32. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  33. Hu HY, Lim BR, Goto N, Fujie K. Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 2001;47:17–24[PubMed][Crossref]
    [Google Scholar]
  34. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded Ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002197
Loading
/content/journal/ijsem/10.1099/ijsem.0.002197
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error