1887

Abstract

The taxonomic status of strain M16386, a nitrogen-fixing but non-nodulating isolate from , was established on the basis of a polyphasic approach. The strain grows as branched hyphae, with vesicles and non-motile productive multilocular sporangia. It metabolizes short fatty acids, TCA cycle intermediates and carbohydrates as carbon sources, and fixes nitrogen in the absence of combined nitrogen source in the growth media. Chemotaxonomic traits of strain M16386 are consistent with its affiliation to the genus . The characteristic diamino acid in the cell wall is -diaminopimelic acid. Strain M16386 contains phosphatidylinositol, phosphatidylglycerol, diphosphatidylglycerol, glycophospholipid and phospholipid as polar lipids; MK-9(H) and MK-9(H) as the predominant menaquinones; iso-C and Cω8 as major fatty acids; and galactose, glucose, mannose, rhamnose and ribose as whole-cell sugars. Strain M16386 showed 98.2 % 16S rRNA gene sequence similarity with its closest phylogenetic neighbour, DSM 45817. Based on these results, strain M16386 (=DSM 100626=CECT 9040) is designated the type strain of a novel species of the genus for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002153
2017-12-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/4897.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002153&mimeType=html&fmt=ahah

References

  1. Gtari M, Tisa LS, Normand P. Diversity of Frankia strains, actinobacterial symbionts of actinorhizal plants. In Aroca R. (editor) Symbiotic Endophytes Berlin, Heidelberg: Springer; 2013; pp.123–148[Crossref]
    [Google Scholar]
  2. Benson DR, Silvester WB. Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 1993;57:293–319[PubMed]
    [Google Scholar]
  3. Nouioui I, Ghodhbane-Gtari F, Montero-Calasanz MD, Göker M, Meier-Kolthoff JP et al. Proposal of a type strain for Frankia alni (Woronin 1866) Von Tubeuf 1895, emended description of Frankia alni, and recognition of Frankia casuarinae sp. nov. and Frankia elaeagni sp. nov. Int J Syst Evol Microbiol 2016;66:5201–5210 [CrossRef][PubMed]
    [Google Scholar]
  4. Nouioui I, del Carmen Montero-Calasanz M, Ghodhbane-Gtari F, Rohde M, Tisa LS et al. Frankia discariae sp. nov.: an infective and effective microsymbiont isolated from the root nodule of Discaria trinervis. Arch Microbiol 2017;199:641–647 [CrossRef][PubMed]
    [Google Scholar]
  5. Nouioui I, Ghodhbane-Gtari F, del Carmen Montero-Calasanz M, Rohde M, Tisa LS et al. Frankia inefficax sp. nov., an actinobacterial endophyte inducing ineffective, non nitrogen-fixing, root nodules on its actinorhizal host plants. Antonie van Leeuwenhoek 2017;110:313–320 [CrossRef][PubMed]
    [Google Scholar]
  6. Lechevalier MP. Nitrogen-fixing actinomycetes of the genus Frankia. In Megusar F, Gantar M. (editors) Perspectives in Microbial Ecology Ljubljana, Yugoslavia: Slovene Society for Microbiology; 1986; pp.253–256
    [Google Scholar]
  7. Nouioui I, Ghodhbane-Gtari F, Rohde M, Klenk HP, Gtari M. Frankia coriariae sp. nov., an infective and effective microsymbiont isolated from Coriaria japonica. Int J Syst Evol Microbiol 2017;67:1266–1270 [CrossRef][PubMed]
    [Google Scholar]
  8. Murry MA, Fontaine MS, Torrey JG. Growth kinetics and nitrogenase induction in Frankia sp. HFPArI 3 grown in batch culture. Plant Soil 1984;78:61–78 [CrossRef]
    [Google Scholar]
  9. Stewart WD, Fitzgerald GP, Burris RH. In situ studies on N2 fixation using the acetylene reduction technique. Proc Natl Acad Sci USA 1967;58:2071–2078 [CrossRef][PubMed]
    [Google Scholar]
  10. Baker DD. Relationships among pure cultured strains of Frankia based on host specificity. Physiol Plant 1987;70:245–248 [CrossRef]
    [Google Scholar]
  11. Broughton WJ, Dilworth MJ. Control of leghaemoglobin synthesis in snake beans. Biochem J 1971;125:1075–1080 [CrossRef][PubMed]
    [Google Scholar]
  12. Huguet V, Land EO, Casanova JG, Zimpfer JF, Fernandez MP. Genetic diversity of Frankia microsymbionts from the relict species Myrica faya (Ait.) and Myrica rivas-martinezii (S.) in Canary Islands and Hawaii. Microb Ecol 2005;49:617–625 [CrossRef][PubMed]
    [Google Scholar]
  13. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584–586[PubMed]
    [Google Scholar]
  14. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE, Apos NJJ, Acids F. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
  15. Brunchorst J. Über einige Wurzelanschwellungen, besonders diejenigen von Alnus und den Elaeagnaceen. Unters Bot Inst Tübingen 1886;2:151–177
    [Google Scholar]
  16. Nouioui I, Ghodhbane-Gtari F, Beauchemin NJ, Tisa LS, Gtari M. Phylogeny of members of the Frankia genus based on gyrB, nifH and glnII sequences. Antonie van Leeuwenhoek 2011;100:579–587 [CrossRef][PubMed]
    [Google Scholar]
  17. Lane DJ. 16S /23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp.115–175
    [Google Scholar]
  18. Ghodhbane-Gtari F, Nouioui I, Chair M, Boudabous A, Gtari M. 16S-23S rRNA intergenic spacer region variability in the genus Frankia. Microb Ecol 2010;60:487–495 [CrossRef][PubMed]
    [Google Scholar]
  19. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013;195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  20. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014;9:2 [CrossRef][PubMed]
    [Google Scholar]
  22. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  23. Goloboff PA, Farris JS, Nixon KC. TNT, a free program for phylogenetic analysis. Cladistics 2008;24:774–786 [CrossRef]
    [Google Scholar]
  24. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  25. Swofford DL. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0 Sunderland: Sinauer Associates; 2002
    [Google Scholar]
  26. Pattengale ND, Alipour M, Bininda-Emonds OR, Moret BM, Stamatakis A. How many bootstrap replicates are necessary?. J Comput Biol 2010;17:337–354 [CrossRef][PubMed]
    [Google Scholar]
  27. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002153
Loading
/content/journal/ijsem/10.1099/ijsem.0.002153
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error