1887

Abstract

A Gram-staining-negative, non-motile, non-pigmented, rod-shaped bacterium was isolated from an Arctic coastal seawater sample and was designated strain IMCC9565. Analysis of the 16S rRNA gene sequence of strain IMCC9565 revealed that the closest phylogenetic neighbours of the strain were members of the genus Furthermore, the strain formed a robust clade with SH6-1, with which it shared 97.9 % 16S rRNA gene sequence similarity. Determination of genomic relatedness based on average nucleotide identity and genome-to-genome distance showed that strain IMCC9565 was distantly related to , meaning the Arctic strain represents a novel species. Optimum growth of strain IMCC9565 was observed at 20 °C, pH 7.0 and in the presence of 2 % (w/v) NaCl. The major respiratory isoprenoid quinone was ubiquinone-10 (Q-10) and the major polar lipids consisted of phosphatidylglycerol, phosphatidylcholine, one unidentified aminolipid and two unidentified lipids. The principal fatty acids were Cω7 and/or Cω6, Cω7 11-methyl and C, and the DNA G+C content was 57.1 mol%. Based on these data, sp. nov. is proposed to accommodate the bacterial isolate and the type strain is IMCC9565 (=KACC 18009=NBRC 110393).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002152
2017-09-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/9/3501.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002152&mimeType=html&fmt=ahah

References

  1. Hahnke S, Tindall BJ, Schumann P, Sperling M, Brinkhoff T et al. Planktotalea frisia gen. nov., sp. nov., isolated from the southern North Sea. Int J Syst Evol Microbiol 2012;62:1619–1624 [CrossRef][PubMed]
    [Google Scholar]
  2. Giovannoni SJ, Rappé MS. Evolution, diversity and molecular ecology of marine prokaryotes. In Kirchman DL. (editor) Microbial Ecology of the Ocean New York: John Wiley & Sons; 2000; pp.47–84
    [Google Scholar]
  3. Cho JC, Giovannoni SJ. Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the α-Proteobacteria. Int J Syst Evol Microbiol 2003;53:1031–1036 [CrossRef][PubMed]
    [Google Scholar]
  4. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  5. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  6. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  7. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132[CrossRef]
    [Google Scholar]
  8. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  10. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  11. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  12. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  13. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  14. Béjà O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM et al. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 2002;415:630–633 [CrossRef][PubMed]
    [Google Scholar]
  15. Choo YJ, Lee K, Song J, Cho JC. Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum 'Verrucomicrobia'. Int J Syst Evol Microbiol 2007;57:532–537 [CrossRef][PubMed]
    [Google Scholar]
  16. Smibert RM, Krieg NR. Phenotypic characteristics. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  17. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007; pp.330–393
    [Google Scholar]
  18. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin Strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  19. Martens T, Heidorn T, Pukall R, Simon M, Tindall BJ et al. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol 2006;56:1293–1304 [CrossRef][PubMed]
    [Google Scholar]
  20. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  21. Collins MD. Analysis of isoprenoid quinones. Methods Microbiol 1985;18:329–363[CrossRef]
    [Google Scholar]
  22. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002152
Loading
/content/journal/ijsem/10.1099/ijsem.0.002152
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error