1887

Abstract

A bacterial strain, designated IMCC26223, was isolated from an oligotrophic freshwater lake, Lake Soyang, Korea. Cells of strain IMCC26223 were Gram-staining negative, strictly aerobic, non-motile and short-rod-shaped. Growth occurred at pH 6–8 (optimum, pH 7.0), at 4–25 °C (optimum, 15 °C) and with 0–0.5 % (w/v) NaCl (optimum, 0 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain IMCC26223 was identified as a member of the genus Flavobacterium and most closely related to Flavobacterium fluvii H7 (97.6 %), Flavobacterium segetis AT1048 (97.5 %) and Flavobacterium weaverense AT1042 (97.2 %). DNA–DNA relatedness between strain IMCC26223 and F. fluvii H7 was 41.5–51.7 % in the reciprocal hybridization. Strain IMCC26223 contained MK-6 as the major respiratory quinone. The major cellular fatty acids consisted of C16 : 0, iso-C15 : 0, anteiso-C15 : 0 and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), and the polar lipids were phosphatidylethanolamine, an unidentified aminolipid and two unidentified lipids. The DNA G+C content of strain IMCC26223 was 34.5 mol%. On the basis of 16S rRNA gene phylogeny and phenotypic characterization, strain IMCC26223 represents a novel species of the genus Flavobacterium , for which the name Flavobacterium soyangense sp. nov., is proposed. The type strain is IMCC26223 (=KCTC 52245=JCM 31384).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001987
2017-07-26
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2440.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001987&mimeType=html&fmt=ahah

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM et al. Genus II. Flavobacterium gen. nov. In: Bergey’s Manual of Determinative Bacteriology Baltimore: Williams & Wilkins; 1923; pp. 97– 117
    [Google Scholar]
  2. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 1996; 46: 128– 148 [CrossRef]
    [Google Scholar]
  3. Dong K, Xu B, Zhu F, Wang G. Flavobacterium hauense sp. nov., isolated from soil and emended descriptions of Flavobacterium subsaxonicum, Flavobacterium beibuense and Flavobacterium rivuli. Int J Syst Evol Microbiol 2013; 63: 3237– 3242 [CrossRef] [PubMed]
    [Google Scholar]
  4. Kuo I, Saw J, Kapan DD, Christensen S, Kaneshiro KY et al. Flavobacterium akiainvivens sp. nov., from decaying wood of Wikstroemia oahuensis, Hawai'i, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 2013; 63: 3280– 3286 [CrossRef] [PubMed]
    [Google Scholar]
  5. Joung Y, Kim H, Joh K. Flavobacterium jumunjinense sp. nov., isolated from a lagoon, and emended descriptions of Flavobacterium cheniae, Flavobacterium dongtanense and Flavobacterium gelidilacus. Int J Syst Evol Microbiol 2013; 63: 3937– 3943 [CrossRef] [PubMed]
    [Google Scholar]
  6. Kim JH, Kim KY, Cha CJ. Flavobacterium chungangense sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 2009; 59: 1754– 1758 [CrossRef] [PubMed]
    [Google Scholar]
  7. Joung Y, Kim H, Ahn TS, Joh K. Flavobacterium yonginense sp. nov. and Flavobacterium myungsuense sp. nov., isolated from a mesotrophic artificial lake. Int J Syst Evol Microbiol 2012; 62: 806– 810 [CrossRef] [PubMed]
    [Google Scholar]
  8. Chun J, Kang JY, Jahng KY. Flavobacterium fontis sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2013; 63: 1653– 1657 [CrossRef] [PubMed]
    [Google Scholar]
  9. Kim H, Kang H, Joung Y, Joh K. Flavobacterium gyeonganense sp. nov., isolated from freshwater, and emended descriptions of Flavobacterium chungangense, Flavobacterium aquidurense, Flavobacterium tructae and Flavobacterium granuli. Int J Syst Evol Microbiol 2014; 64: 4173– 4178 [CrossRef] [PubMed]
    [Google Scholar]
  10. Feng Q, Gao Y, Nogi Y, Tan X, Han L et al. Flavobacterium maotaiense sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2015; 65: 171– 176 [CrossRef] [PubMed]
    [Google Scholar]
  11. Yi H, Chun J. Flavobacterium weaverense sp. nov. and Flavobacterium segetis sp. nov., novel psychrophiles isolated from the Antarctic. Int J Syst Evol Microbiol 2006; 56: 1239– 1244 [CrossRef] [PubMed]
    [Google Scholar]
  12. Yoon JH, Kang SJ, Oh TK. Flavobacterium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 2006; 56: 997– 1000 [CrossRef] [PubMed]
    [Google Scholar]
  13. Weon HY, Song MH, Son JA, Kim BY, Kwon SW et al. Flavobacterium terrae sp. nov. and Flavobacterium cucumis sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 2007; 57: 1594– 1598 [CrossRef] [PubMed]
    [Google Scholar]
  14. Liu H, Liu R, Yang SY, Gao WK, Zhang CX et al. Flavobacterium anhuiense sp. nov., isolated from field soil. Int J Syst Evol Microbiol 2008; 58: 756– 760 [CrossRef] [PubMed]
    [Google Scholar]
  15. Suwannachart C, Rueangyotchanthana K, Srichuay S, Pheng S, Fungsin B et al. Flavobacterium tistrianum sp. nov., a gliding bacterium isolated from soil. Int J Syst Evol Microbiol 2016; 66: 2241– 2246 [CrossRef] [PubMed]
    [Google Scholar]
  16. Lee SH, Kim JM, Lee JR, Park W, Jeon CO. Flavobacterium fluvii sp. nov., isolated from stream sediment. Int J Syst Evol Microbiol 2010; 60: 353– 357 [CrossRef] [PubMed]
    [Google Scholar]
  17. Fu Y, Tang X, Lai Q, Zhang C, Zhong H et al. Flavobacterium beibuense sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2011; 61: 205– 209 [CrossRef] [PubMed]
    [Google Scholar]
  18. Xu M, Xin Y, Tian J, Dong K, Yu Y et al. Flavobacterium sinopsychrotolerans sp. nov., isolated from a glacier. Int J Syst Evol Microbiol 2011; 61: 20– 24 [CrossRef] [PubMed]
    [Google Scholar]
  19. Humphry DR, George A, Black GW, Cummings SP. Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol Microbiol 2001; 51: 1235– 1243 [CrossRef] [PubMed]
    [Google Scholar]
  20. Kämpfer P, Lodders N, Martin K, Avendaño-Herrera R. Flavobacterium chilense sp. nov. and Flavobacterium araucananum sp. nov., isolated from farmed salmonid fish. Int J Syst Evol Microbiol 2012; 62: 1402– 1408 [CrossRef] [PubMed]
    [Google Scholar]
  21. Fujii D, Nagai F, Watanabe Y, Shirasawa Y. Flavobacterium longum sp. nov. and Flavobacterium urocaniciphilum sp. nov., isolated from a wastewater treatment plant, and emended descriptions of Flavobacterium caeni and Flavobacterium terrigena. Int J Syst Evol Microbiol 2014; 64: 1488– 1494 [CrossRef] [PubMed]
    [Google Scholar]
  22. Connon SA, Giovannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 2002; 68: 3878– 3885 [CrossRef] [PubMed]
    [Google Scholar]
  23. Cho JC, Giovannoni SJ. Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl Environ Microbiol 2004; 70: 432– 440 [CrossRef] [PubMed]
    [Google Scholar]
  24. Davis HC, Guillard RR. Relative Value of Ten Genera of Micro-Organisms as Foods for Oyster and Clam Larvaevol. 58 US Government Printing Office; 1958; pp. 290– 304
    [Google Scholar]
  25. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  26. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32: 1363– 1371 [CrossRef] [PubMed]
    [Google Scholar]
  27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  29. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp. 21– 32 [CrossRef]
    [Google Scholar]
  30. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  31. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  32. Wayne LG, Brenner DJ, Colwell RR, Grimont PA, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  33. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049– 1070 [CrossRef] [PubMed]
    [Google Scholar]
  34. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007; pp. 330– 393
    [Google Scholar]
  35. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4: 770– 773 [CrossRef] [PubMed]
    [Google Scholar]
  36. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark DE: MIDI Inc; 1990
    [Google Scholar]
  37. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  38. Collins MD. Analysis of isoprenoid quinones. Methods Microbiol 1985; 18: 329– 363 [CrossRef]
    [Google Scholar]
  39. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [CrossRef]
    [Google Scholar]
  40. Lee S, Weon HY, Kim SJ, Ahn TY. Flavobacterium koreense sp. nov., Flavobacterium chungnamense sp. nov., and Flavobacterium cheonanense sp. nov., isolated from a freshwater reservoir. J Microbiol 2011; 49: 387– 392 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001987
Loading
/content/journal/ijsem/10.1099/ijsem.0.001987
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error