1887

Abstract

Bacteria with potential probiotic applications are not yet sufficiently explored, even for animals with economic importance. Therefore, we decided to isolate and identify representatives of the family Bifidobacteriaceae , which inhabit the crop of laying hens. During the study, a fructose-6-phosphate phosphoketolase-positive strain, RP51, with a regular/slightly irregular and sometimes an S-shaped slightly curved rod-like shape, was isolated from the crop of a 13 -month-old Hisex Brown hybrid laying hen. The best growth of the Gram-stain-positive bacterium, which was isolated using Bifidobacterium -selective mTPY agar, was found out to be under strictly anaerobic conditions, however an ability to grow under microaerophilic and aerobic conditions was also observed. Sequencing of the almost complete 16S rRNA gene (1444 bp) showed Alloscardovia omnicolens CCUG 31649 and Bombiscardovia coagulans BLAPIII/AGV to be the most closely related species with similarities of 93.4 and 93.1 %, respectively. Lower sequence similarities were determined with other scardovial genera and other representatives of the genus Bifidobacterium . Taxonomic relationships with A. omnicolens and other members of the family Bifidobacteriaceae were also demonstrated, based on the sequences of dnaK, fusA, hsp60 and rplB gene fragments. Low sequence similarities of phylogenetic markers to related scardovial genera and bifidobacteria along with unique features of the bacterial strain investigated within the family Bifidobacteriaceae ( including the lowest DNA G+C value (44.3 mol%), a unique spectrum of cellular fatty acids and polar lipids, cellular morphology, the wide temperature range for growth (15–49 °C) and habitat) clearly indicate that strain RP51 is a representative of a novel genus within the family Bifidobacteriaceae for which the name Galliscardovia ingluviei gen. nov., sp. nov. (RP51=DSM 100235=LMG 28778=CCM 8606) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001972
2017-07-21
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2403.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001972&mimeType=html&fmt=ahah

References

  1. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 1998; 95: 6578– 6583 [CrossRef] [PubMed]
    [Google Scholar]
  2. Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proc Natl Acad Sci USA 2016; 113: 5970– 5975 [CrossRef] [PubMed]
    [Google Scholar]
  3. Apajalahti J, Kettunen A, Graham H. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. Worlds Poult Sci J 2004; 60: 223– 232 [CrossRef]
    [Google Scholar]
  4. Apajalahti J. Comparative gut microflora, metabolic challenges, and potential opportunities. J Appl Poult Res 2005; 14: 444– 453 [CrossRef]
    [Google Scholar]
  5. Hanning I, Diaz-Sanchez S. The functionality of the gastrointestinal microbiome in non-human animals. Microbiome 2015; 3: 51 [CrossRef] [PubMed]
    [Google Scholar]
  6. Apajalahti JH, Kettunen A, Bedford MR, Holben WE. Percent G+C profiling accurately reveals diet-related differences in the gastrointestinal microbial community of broiler chickens. Appl Environ Microbiol 2001; 67: 5656– 5667 [CrossRef] [PubMed]
    [Google Scholar]
  7. Santini C, Baffoni L, Gaggia F, Granata M, Gasbarri R et al. Characterization of probiotic strains: an application as feed additives in poultry against Campylobacter jejuni. Int J Food Microbiol 2010; 141: S98– S108 [CrossRef] [PubMed]
    [Google Scholar]
  8. Baffoni L, Gaggìa F, di Gioia D, Santini C, Mogna L et al. A Bifidobacterium-based synbiotic product to reduce the transmission of C. jejuni along the poultry food chain. Int J Food Microbiol 2012; 157: 156– 161 [CrossRef] [PubMed]
    [Google Scholar]
  9. Forte C, Moscati L, Acuti G, Mugnai C, Franciosini MP et al. Effects of dietary Lactobacillus acidophilus and Bacillus subtilis on laying performance, egg quality, blood biochemistry and immune response of organic laying hens. J Anim Physiol Anim Nutr 2016; 100: 977– 987 [CrossRef] [PubMed]
    [Google Scholar]
  10. Zhang T, Xie J, Zhang M, Fu N, Zhang Y. Effect of a potential probiotics Lactococcus garvieae B301 on the growth performance, immune parameters and caecum microflora of broiler chickens. J Anim Physiol Anim Nutr 2016; 100: 413– 421 [CrossRef] [PubMed]
    [Google Scholar]
  11. Roto SM, Rubinelli PM, Ricke SC. An introduction to the avian gut Microbiota and the effects of Yeast-Based Prebiotic-Type compounds as potential feed additives. Front Vet Sci 2015; 2: 28 [CrossRef] [PubMed]
    [Google Scholar]
  12. Pan D, Yu Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 2014; 5: 108– 119 [CrossRef] [PubMed]
    [Google Scholar]
  13. Zhu XY, Zhong T, Pandya Y, Joerger RD. 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Appl Environ Microbiol 2002; 68: 124– 137 [CrossRef] [PubMed]
    [Google Scholar]
  14. Bjerrum L, Engberg RM, Leser TD, Jensen BB, Finster K et al. Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poult Sci 2006; 85: 1151– 1164 [CrossRef] [PubMed]
    [Google Scholar]
  15. Wei S, Morrison M, Yu Z. Bacterial census of poultry intestinal microbiome. Poult Sci 2013; 92: 671– 683 [CrossRef] [PubMed]
    [Google Scholar]
  16. Petr J, Rada V. Bifidobacteria are obligate inhabitants of the crop of adult laying hens. J Vet Med B Infect Dis Vet Public Health 2001; 48: 227– 233 [CrossRef] [PubMed]
    [Google Scholar]
  17. Collado MC, Sanz Y. Characterization of the gastrointestinal mucosa-associated microbiota of pigs and chickens using culture-based and molecular methodologies. J Food Prot 2007; 70: 2799– 2804 [CrossRef] [PubMed]
    [Google Scholar]
  18. Gong J, Si W, Forster RJ, Huang R, Yu H et al. 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiol Ecol 2007; 59: 147– 157 [CrossRef] [PubMed]
    [Google Scholar]
  19. Rada V, Petr J. A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. J Microbiol Methods 2000; 43: 127– 132 [CrossRef] [PubMed]
    [Google Scholar]
  20. Han GG, Kim EB, Lee J, Lee JY, Jin G et al. Relationship between the microbiota in different sections of the gastrointestinal tract, and the body weight of broiler chickens. Springerplus 2016; 5: 911 [CrossRef] [PubMed]
    [Google Scholar]
  21. Orban JI, Patterson JA. Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J Microbiol Methods 2000; 40: 221– 224 [CrossRef] [PubMed]
    [Google Scholar]
  22. Killer J, Mrázek J, Bunešová V, Havlík J, Koppová I et al. Pseudoscardovia suis gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of wild pigs (Sus scrofa). Syst Appl Microbiol 2013; 36: 11– 16 [CrossRef] [PubMed]
    [Google Scholar]
  23. Biavati B, Mattarelli P. Genus Bifidobacterium. In Whitman W, Goodfellow M, Kämpfer P, H–J Busse, Trujillo M et al. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed.vol. 5 New York: Springer; 2012; pp. 171– 179
    [Google Scholar]
  24. Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Röser A et al. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 1998; 64: 3042– 3051 [PubMed]
    [Google Scholar]
  25. Ehrmann MA, Müller MR, Vogel RF. Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov. Int J Syst Evol Microbiol 2003; 53: 7– 13 [CrossRef] [PubMed]
    [Google Scholar]
  26. Scardovi V. Genus Bifidobacterium. In Sneath PHA, Mair NS, Sharp ME, Holt JG. (editors) Bergey´s Manual of Systematic Bacteriologyvol. 2 Baltimore: Williams & Wilkins; 1986; pp. 1418– 1419
    [Google Scholar]
  27. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  28. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60: 249– 266 [CrossRef] [PubMed]
    [Google Scholar]
  29. Ventura M, Zink R, Fitzgerald GF, van Sinderen D. Gene structure and transcriptional organization of the dnaK operon of Bifidobacterium breve UCC 2003 and application of the operon in bifidobacterial tracing. Appl Environ Microbiol 2005; 71: 487– 500 [CrossRef] [PubMed]
    [Google Scholar]
  30. Okamoto M, Benno Y, Leung KP, Maeda N. Metascardovia criceti gen. nov., sp. nov., from hamster dental plaque. Microbiol Immunol 2007; 51: 747– 754 [CrossRef] [PubMed]
    [Google Scholar]
  31. Delétoile A, Passet V, Aires J, Chambaud I, Butel MJ et al. Species delineation and clonal diversity in four Bifidobacterium species as revealed by multilocus sequencing. Res Microbiol 2010; 161: 82– 90 [CrossRef] [PubMed]
    [Google Scholar]
  32. Leblond-Bourget N, Philippe H, Mangin I, Decaris B. 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Bifidobacterium phylogeny. Int J Syst Bacteriol 1996; 46: 102– 111 [CrossRef] [PubMed]
    [Google Scholar]
  33. Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 2015; 38: 237– 245 [CrossRef] [PubMed]
    [Google Scholar]
  34. Hall T. BioEdit: a user-friendly biologicalsequence alignment editor and analysis programfor Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  35. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17: 540– 552 [CrossRef] [PubMed]
    [Google Scholar]
  36. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  37. Killer J, Havlik J, Bunesova V, Vlkova E, Benada O. Pseudoscardovia radai sp. nov., another representative of a new genus within the family Bifidobacteriaceae isolated from the digestive tract of a wild pig (Sus scrofa scrofa). Int J Syst Evol Microbiol 2014; 64: 2932– 2938 [CrossRef] [PubMed]
    [Google Scholar]
  38. Killer J, Kopečný J, Mrázek J, Havlík J, Koppová I et al. Bombiscardovia coagulans gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of bumblebees. Syst Appl Microbiol 2010; 33: 359– 366 [CrossRef] [PubMed]
    [Google Scholar]
  39. Killer J, Rocková Š, Vlková E, Rada V, Havlík J et al. Alloscardovia macacae sp. nov., isolated from the milk of a macaque (Macaca mulatta), emended description of the genus Alloscardovia and proposal of Alloscardovia criceti comb. nov. Int J Syst Evol Microbiol 2013; 63: 4439– 4446 [CrossRef] [PubMed]
    [Google Scholar]
  40. Michelini S, Modesto M, Filippini G, Spiezio C, Sandri C et al. Bifidobacterium aerophilum sp. nov., Bifidobacterium avesanii sp. nov. and Bifidobacterium ramosum sp. nov.: three novel taxa from the faeces of cotton-top tamarin (Saguinus oedipus L.). Syst Appl Microbiol 2016; 39: 229– 236 [CrossRef] [PubMed]
    [Google Scholar]
  41. Zhu L, Li W, Dong X. Species identification of genus Bifidobacterium based on partial HSP60 gene sequences and proposal of Bifidobacterium thermacidophilum subsp. porcinum subsp. nov. Int J Syst Evol Microbiol 2003; 53: 1619– 1623 [CrossRef] [PubMed]
    [Google Scholar]
  42. Killer J, Kopecný J, Mrázek J, Rada V, Benada O et al. Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 2009; 59: 2020– 2024 [CrossRef] [PubMed]
    [Google Scholar]
  43. Watabe J, Benno Y, Mitsuoka T. Bifidobacterium gallinarum sp. nov.: a new species isolated from the ceca of chickens. Int J Syst Bacteriol 1983; 33: 127– 132 [CrossRef]
    [Google Scholar]
  44. Killer J, Kopečný J, Mrázek J, Koppová I, Havlík J et al. Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 2011; 61: 1315– 1321 [CrossRef] [PubMed]
    [Google Scholar]
  45. Morita H, Nakano A, Onoda H, Toh H, Oshima K et al. Bifidobacterium kashiwanohense sp. nov., isolated from healthy infant faeces. Int J Syst Evol Microbiol 2011; 61: 2610– 2615 [CrossRef] [PubMed]
    [Google Scholar]
  46. Choi JH, Lee KM, Lee MK, Cha CJ, Kim GB. Bifidobacterium faecale sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2014; 64: 3134– 3139 [CrossRef] [PubMed]
    [Google Scholar]
  47. Tsuchida S, Takahashi S, Nguema PP, Fujita S, Kitahara M et al. Bifidobacterium moukalabense sp. nov., isolated from the faeces of wild west lowland gorilla (Gorilla gorilla gorilla). Int J Syst Evol Microbiol 2014; 64: 449– 455 [CrossRef] [PubMed]
    [Google Scholar]
  48. Michelini S, Oki K, Yanokura E, Shimakawa Y, Modesto M et al. Bifidobacterium myosotis sp. nov., Bifidobacterium tissieri sp. nov. and Bifidobacterium hapali sp. nov., isolated from faeces of baby common marmosets (Callithrix jacchus L.). Int J Syst Evol Microbiol 2016; 66: 255– 265 [CrossRef] [PubMed]
    [Google Scholar]
  49. Exterkate FA, Otten BJ, Wassenberg HW, Veerkamp JH. Comparison of the phospholipid composition of Bifidobacterium and Lactobacillus strains. J Bacteriol 1971; 106: 824– 829 [PubMed]
    [Google Scholar]
  50. Novik GI, Astapovich NI, Grzegorzewicz A, Gam'yan A. [Isolation and comparative analysis of glycolipid fractions in bifidobacteria]. Microbiology 2005; 74: 670– 677 [CrossRef]
    [Google Scholar]
  51. Novik GI, Astapovich NI, Grzhegorzhevich A, Gamian A. Analysis of phospholipids in bifidobacteria. Mikrobiologiia 2006; 75: 29– 34 [CrossRef] [PubMed]
    [Google Scholar]
  52. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38: 101– 129 [CrossRef]
    [Google Scholar]
  53. Endo A, Futagawa-Endo Y, Schumann P, Pukall R, Dicks LM. Bifidobacterium reuteri sp. nov., Bifidobacterium callitrichos sp. nov., Bifidobacterium saguini sp. nov., Bifidobacterium stellenboschense sp. nov. and Bifidobacterium biavatii sp. nov. isolated from faeces of common marmoset (Callithrix jacchus) and red-handed tamarin (Saguinus midas). Syst Appl Microbiol 2012; 35: 92– 97 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001972
Loading
/content/journal/ijsem/10.1099/ijsem.0.001972
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error