1887

Abstract

Two strains, DMKU-LV83 and DMKU-LV85, of a novel yeast species were isolated from the phylloplane of vetiver grass collected in Thailand by plating of leaf washings. Analysis of the sequences of the D1/D2 region of the large subunit (LSU) rRNA gene showed that the two strains represent a single novel species and most closely related to . However, the novel species differed from the type strain of (MCA 3882) by 5.5 % nucleotide substitutions in the D1/D2 region and 8.9 % nucleotide substitutions in the ITS region. The phylogenetic analysis based on the D1/D2 region of the LSU rRNA gene confirmed the placement of the novel species in the clade and its close affinity with . Therefore, the species sp. nov. is proposed. The type strain is DMKU-LV83 (=CBS 12860=BCC 61180).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001969
2017-07-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2418.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001969&mimeType=html&fmt=ahah

References

  1. Boekhout T, Theelen B, Houbraken J, Robert V, Scorzetti G et al. Novel anamorphic mite-associated fungi belonging to the Ustilaginomycetes: Meira geulakonigii gen. nov., sp. nov., Meira argovae sp. nov. and Acaromyces ingoldii gen. nov., sp. nov. Int J Syst Evol Microbiol 2003; 53:1655–1664 [View Article][PubMed]
    [Google Scholar]
  2. Rush TA, Aime MC. The genus Meira: phylogenetic placement and description of a new species. Antonie van Leeuwenhoek 2013; 103:1097–1106 [View Article][PubMed]
    [Google Scholar]
  3. Wang QM, Begerow D, Groenewald M, Liu XZ, Theelen B et al. Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Stud Mycol 2015; 81:55–83 [View Article][PubMed]
    [Google Scholar]
  4. Yasuda F, Izawa H, Yamagishi D, Akamatsu H, Kodama M et al. Meira nashicola sp. nov., a novel basidiomycetous, anamorphic yeastlike fungus isolated from Japanese pear fruit with reddish stain. Mycoscience 2006; 47:36–40 [View Article]
    [Google Scholar]
  5. Fonseca A, Inácio J. Phylloplane yeasts. In Rosa CA, Peter G. (editors) Biodiversity and Ecophysiology of Yeasts Berlin: Springer; 2006 pp. 263–301 [CrossRef]
    [Google Scholar]
  6. De Azeredo LA, Gomes EA, Mendonça-Hagler LC, Hagler AN. Yeast communities associated with sugarcane in Campos, Rio De Janeiro, Brazil. Int Microbiol 1998; 1:205–208[PubMed]
    [Google Scholar]
  7. Nakase T, Takashima M, Itoh M, Fungsin B, Potacharoen W et al. Ballistoconidium-forming yeasts found in the phyllosphere of Thailand. Microbiol Cult Coll 2001; 17:23–33
    [Google Scholar]
  8. Sláviková E, Vadkertiová R, Vránová D. Yeasts colonizing the leaves of fruit trees. Ann Microbiol 2009; 59:419–424 [View Article]
    [Google Scholar]
  9. Landell MF, Billodre R, Ramos JP, Leoncini O, Vainstein MH et al. Candida aechmeae sp. nov. and Candida vrieseae sp. nov., novel yeast species isolated from the phylloplane of bromeliads in Southern Brazil. Int J Syst Evol Microbiol 2010; 60:244–248 [View Article][PubMed]
    [Google Scholar]
  10. Limtong S, Koowadjanakul N. Yeasts from phylloplane and their capability to produce indole-3-acetic acid. World J Microbiol Biotechnol 2012; 28:3323–3335 [View Article][PubMed]
    [Google Scholar]
  11. Limtong S, Kaewwichian R. The diversity of culturable yeasts in the phylloplane of rice in Thailand. Ann Microbiol 2015; 65:667–675 [View Article]
    [Google Scholar]
  12. Nasanit R, Tangwong-O-Thai A, Tantirungkij M, Limtong S. The assessment of epiphytic yeast diversity in sugarcane phyllosphere in Thailand by culture-independent method. Fungal Biol 2015; 119:1145–1157 [View Article][PubMed]
    [Google Scholar]
  13. Nasanit R, Jaibangyang S, Tantirungkij M, Limtong S. Yeast diversity and novel yeast D1/D2 sequences from corn phylloplane obtained by a culture-independent approach. Antonie van Leeuwenhoek 2016; 109:1615–1634 [View Article][PubMed]
    [Google Scholar]
  14. Kaewwichian R, Jindamorakot S, Am-In S, Sipiczki M, Limtong S. Hannaella siamensis sp. nov. and Hannaella phetchabunensis sp. nov., two new anamorphic basidiomycetous yeast species isolated from plants. Int J Syst Evol Microbiol 2015; 65:1297–1303 [View Article][PubMed]
    [Google Scholar]
  15. Surussawadee J, Khunnamwong P, Srisuk N, Limtong S. Papiliotrema siamense f.a., sp. nov., a yeast species isolated from plant leaves. Int J Syst Evol Microbiol 2014; 64:3058–3062 [View Article][PubMed]
    [Google Scholar]
  16. Kaewwichian R, Yongmanitchai W, Kawasaki H, Limtong S. Metschnikowia saccharicola sp. nov. and Metschnikowia lopburiensis sp. nov., two novel yeast species isolated from phylloplane in Thailand. Antonie van Leeuwenhoek 2012; 102:743–751 [View Article][PubMed]
    [Google Scholar]
  17. Kaewwichian R, Limtong S. Nakazawaea siamensis f.a., sp. nov., a yeast species isolated from phylloplane. Int J Syst Evol Microbiol 2014; 64:266–270 [View Article][PubMed]
    [Google Scholar]
  18. Chamnanpa T, Limtong P, Srisuk N, Limtong S. Pseudozyma vetiver sp. nov., a novel anamorphic ustilaginomycetous yeast species isolated from the phylloplane in Thailand. Antonie van Leeuwenhoek 2013; 104:637–644 [View Article][PubMed]
    [Google Scholar]
  19. Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 1998; 73:331–371 [View Article][PubMed]
    [Google Scholar]
  20. White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelfand DH, Sninsky JJ, White TJ. (editors) PCR Protocols: A Guide to Methods and Applications New York: Academic Press; 1990 pp. 315–322
    [Google Scholar]
  21. Limtong S, Yongmanitchai W, Kawasaki H, Seki T. Candida thaimueangensis sp. nov., an anamorphic yeast species from estuarine water in a mangrove forest in Thailand. Int J Syst Evol Microbiol 2007; 57:650–653 [View Article][PubMed]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  24. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004; 101:11030–11035 [View Article][PubMed]
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  26. Kurtzman CP, Fell JW, Boekhout T, Robert V. Methods for isolation, phenotypic characterization and maintenance of yeasts. In Kurtzman CP, Fell JW, Boekhout T. (editors) The Yeasts, A Taxonomic Study, 5th ed. Amsterdam: Elsevier; 2011 pp. 87–110 [CrossRef]
    [Google Scholar]
  27. Yamada Y, Kondô K. Coenzyme Q system in the classification of the yeast genera Rhodotorula and Cryptococcus, and the yeast-like genera Sporobolomyces and Rhodosporidium . J Gen Appl Microbiol 1973; 19:59–77 [View Article]
    [Google Scholar]
  28. Kuraishi H, Katayama-Fujimura Y, Sugiyama J, Yokoyama T. Ubiquinone systems in fungi I. Distribution of ubiquinones in the major families of ascomycetes basidiomycetes and deuteromycetes and their taxonomic implications. Trans Mycol Soc Japan 1985; 26:383–395
    [Google Scholar]
  29. Boekhout T. Meira Boekhout, Scorzetti, Gerson & Sztejnberg (2003). In Kurtzman CP. (editor) The Yeasts, A Taxonomic Study, 5th ed. Amsterdam: Elsevier; 2011 pp. 1833–1836 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.001969
Loading
/content/journal/ijsem/10.1099/ijsem.0.001969
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error