1887

Abstract

A Gram-stain positive, non-spore-forming, non-motile, facultatively anaerobic bacterial strain, designated CAU 1319, was isolated from sea sand and the strain’s taxonomic position was investigated using a polyphasic approach. Strain CAU 1319 grew optimally at 30 °C and at pH 7.5 in the presence of 2 % (w/v) NaCl. Phylogenetic analysis, based on the 16S rRNA gene sequence, revealed that strain CAU 1319 belongs to the genus , and is closely related to IPBSL-7 (similarity 97.69 %), Ben 106 (similarity 95.64 %) and SST-39 (similarity 95.84 %). Strain CAU 1319 had -diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan, MK-9 (H) as the predominant menaquinone, and anteiso-C as the major fatty acid. The polar lipids consisted of phosphatidylglycerol, phosphatidylinositol, two unidentified aminolipids, three unidentified phospholipids and one unidentified glycolipid. Predominant polyamines were spermine and spermidine. The DNA–DNA hybridization value between strain CAU 1319 and IPBSL-7 was 24 %±0.2. The DNA G+C content of the novel strain was 69.5 mol%. On the basis of phenotypic and chemotaxonomic properties, as well as phylogenetic relatedness, strain CAU 1319should be classified as a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CAU 1319(=KCTC 39760=NBRC 111973).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001907
2017-06-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/6/2008.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001907&mimeType=html&fmt=ahah

References

  1. Maszenan AM, Seviour RJ, Patel BKC, Schumann P, Rees GN. Tessaracoccus bendigoensis gen. nov., sp. nov., a Gram-positive Coccus occurring in regular packages or tetrads, isolated from activated sludge biomass. Int J Syst Bacteriol 1999;49:459–468 [CrossRef]
    [Google Scholar]
  2. Lee DW, Lee SD. Tessaracoccus flavescens sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2008;58:785–789 [CrossRef]
    [Google Scholar]
  3. Kampfer P, Lodders N, Warfolomeow I, Busse H-J. Tessaracoccus lubricantis sp. nov., isolated from a metalworking fluid. Int J Syst Evol Microbiol 2009;59:1545–1549 [CrossRef]
    [Google Scholar]
  4. Cai M, Wang L, Cai H, Li Y, Wang Y-N et al. Salinarimonas ramus sp. nov. and Tessaracoccus oleiagri sp. nov., isolated from a crude oil-contaminated saline soil. Int J Syst Evol Microbiol 2011;61:1767–1775 [CrossRef]
    [Google Scholar]
  5. Puente-Sanchez F, Sanchez-Roman M, Amils R, Parro V. Tessaracoccus lapidicaptus sp. nov., an actinobacterium isolated from the deep subsurface of the Iberian pyrite belt. Int J Syst Evol Microbiol 2014;64:3546–3552 [CrossRef]
    [Google Scholar]
  6. Kumari R, Singh P, Schumann P, Lal R. Tessaracoccus flavus sp. nov., isolated from the drainage system of a lindane-producing factory. Int J Syst Evol Microbiol 2016;66:1862–1868 [CrossRef]
    [Google Scholar]
  7. Li GD, Qiu SM, Xu FJ, Jiang CL, Jiang Y et al. Tessaracoccus rhinocerotis sp. nov., isolated from the faeces of Rhinoceros unicornis. Int J Syst Evol Microbiol 2016;66:922–927 [CrossRef]
    [Google Scholar]
  8. Gordon RE, Mihm JM. Identification of Nocardia caviae (Erikson) nov. comb. Ann N Y Acad Sci 1962;98:628–636 [CrossRef]
    [Google Scholar]
  9. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218 [CrossRef]
    [Google Scholar]
  10. Lane DJ. 16S/23S RNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics London: John Wiley & Sons Ltd.; 1991; pp.115–175
    [Google Scholar]
  11. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017; in press
    [Google Scholar]
  12. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef]
    [Google Scholar]
  13. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HH. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132[CrossRef]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  15. Fitch WM, Margoliash E. Construction of phylogenetic trees. Science 1967;155:279–284 [CrossRef]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef]
    [Google Scholar]
  17. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  18. Felsenstein J. PHYLIP – phylogeny inference package (version 3.2).. Cladistics 1989;5:164–166
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  20. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  21. Goris J, Suzuki KI, Vos PD, Nakase T, Kersters K. Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 1998;44:1148–1153 [CrossRef]
    [Google Scholar]
  22. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  23. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  24. Nicholson WL, Setlow P. Sporulation, germination, and outgrowth. In Harwood CR, Cutting SM. (editors) Molecular Biological Methods for Bacillus New York: John Wiley & Sons; 1990; pp.391–450
    [Google Scholar]
  25. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  26. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 6th ed. Menlo Park, CA: Benjamin/Cummings; 2002
    [Google Scholar]
  27. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987;19:1–67
    [Google Scholar]
  28. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  29. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-layer chromatography of methanolysates of mycolic acid-containing Bacteria. J Chromatogr A 1980;188:221–233 [CrossRef]
    [Google Scholar]
  30. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231
    [Google Scholar]
  31. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–208[CrossRef]
    [Google Scholar]
  32. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  33. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the proteobacteria. Syst Appl Microbiol 1988;11:1–8 [CrossRef]
    [Google Scholar]
  34. Busse H-J, Schumann P. Polyamine profiles within genera of the class actinobacteria with LL-diaminopimelic acid in the peptidoglycan. Int J Syst Bacteriol 1999;49:179–184 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001907
Loading
/content/journal/ijsem/10.1099/ijsem.0.001907
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error