1887

Abstract

A novel thermoacidophilic archaeon, strain HS-1, was isolated from the Hakone Ohwaku-dani hot spring in Japan. Cells of strain HS-1 in exponential phase were cocci to irregular cocci with a diameter of 0.8–1.5 µm. The strain grew within a temperature range of 50–70 °C (optimal: 65–70 °C), a pH range of pH 1.4–5.5 (optimal: pH 3.0–3.5) and a NaCl concentration range of 0–2.5 % (w/v). The novel strain grew in aerobic conditions but did not grow anaerobically. Moreover, this strain utilized various complex substrates (beef extract, casamino acids, peptone, tryptone and yeast extract) and sugars (arabinose, xylose, galactose, glucose, maltose, sucrose, raffinose and lactose) as sole carbon sources. No chemolithoautotrophic growth occurred on elemental sulfur, pyrite, K2S4O6, Na2S2O3 or FeSO4 . 7H2O; however, growth by the oxidation of hydrogen occurred weakly. The core lipids were calditoglycerocaldarchaeol (CGTE) and caldarchaeol (DGTE). The DNA G+C content of the strain was 52.0 mol%, which was remarkably higher than those of known species of the order Sulfolobales (31–46.2 %). The growth of the strain was significantly inhibited in the presence of elemental sulfur. Analyses of 16S rRNA and 23S rRNA gene sequences showed that HS-1 belonged to the order Sulfolobales ; however, it was distantly related to all known species of the order Sulfolobales (less than 89 % sequence similarity). On the basis of these results, we propose the novel genus, Sulfodiicoccus, in the order Sulfolobales (in the family Sulfolobaceae ). The type species of the genus is Sulfodiicoccus acidiphilus sp. nov., and the type strain of the species is HS-1 (=JCM 31740=InaCC Ar79).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001881
2017-06-20
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/6/1880.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001881&mimeType=html&fmt=ahah

References

  1. Brock TD, Brock KM, Belly RT, Weiss RL. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 1972;84:54–68 [CrossRef][PubMed]
    [Google Scholar]
  2. Golovacheva RS, Val'ekho-Roman KM, Troitskii AV. Sulfurococcus mirabilis gen. nov., sp. nov., a new thermophilic archaebacterium with the ability to oxidize sulfur. Mikrobiologiya 1985;56:100–107
    [Google Scholar]
  3. Segerer A, Neuner A, Kristjansson JK, Stetter KO. Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 1986;36:559–564 [CrossRef]
    [Google Scholar]
  4. Zillig W, Yeats S, Holz I, Böck A, Rettenberger M et al. Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst Appl Microbiol 1986;8:197–203 [CrossRef]
    [Google Scholar]
  5. Huber G, Spinnler C, Gambacorta A, Stetter KO. Metallosphaera sedula gen, and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 1989;12:38–47 [CrossRef]
    [Google Scholar]
  6. Segerer AH, Trincone A, Gahrtz M, Stetter KO. Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order sulfolobales. Int J Syst Bacteriol 1991;41:495–501 [CrossRef]
    [Google Scholar]
  7. Kurosawa N, Itoh YH, Iwai T, Sugai A, Uda I et al. Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order sulfolobales. Int J Syst Bacteriol 1998;48:451–456 [CrossRef][PubMed]
    [Google Scholar]
  8. Huber H, Stetter KO. Order III. Sulfolobales. In Boone DR, Castenholz RW. (editors) Bergey's Manual of Sydtematic Bacteriology, 2nd ed.vol. 1 New York: Springer; 2001; pp.198–210
    [Google Scholar]
  9. Huber G, Stetter KO. Sulfolobus metallicus, sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilizers. Syst Appl Microbiol 1991;14:372–378 [CrossRef]
    [Google Scholar]
  10. Kozubal MA, Macur RE, Jay ZJ, Beam JP, Malfatti SA et al. Microbial iron cycling in acidic geothermal springs of Yellowstone National Park: integrating molecular surveys, geochemical processes, and isolation of novel Fe-active microorganisms. Front Microbiol 2012;3:109 [CrossRef][PubMed]
    [Google Scholar]
  11. Urbieta MS, Toril EG, Alejandra Giaveno M, Bazán AA, Donati ER. Archaeal and bacterial diversity in five different hydrothermal ponds in the copahue region in Argentina. Syst Appl Microbiol 2014;37:429–441 [CrossRef][PubMed]
    [Google Scholar]
  12. Urbieta MS, González-Toril E, Bazán ÁA, Giaveno MA, Donati E. Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of copahue (Neuquén, Argentina). Extremophiles 2015;19:437–450 [CrossRef][PubMed]
    [Google Scholar]
  13. Kvist T, Ahring BK, Westermann P. Archaeal diversity in icelandic hot springs. FEMS Microbiol Ecol 2007;59:71–80 [CrossRef][PubMed]
    [Google Scholar]
  14. Satoh T, Watanabe K, Yamamoto H, Yamamoto S, Kurosawa N. Archaeal community structures in the solfataric acidic hot springs with different temperatures and elemental compositions. Archaea 2013;2013:1–11 [CrossRef]
    [Google Scholar]
  15. Takai K, Sako Y. A molecular view of archaeal diversity in marine and terrestrial hot water environments. FEMS Microbiol Ecol 1999;28:177–188 [CrossRef]
    [Google Scholar]
  16. Kato S, Itoh T, Yamagishi A. Archaeal diversity in a terrestrial acidic spring field revealed by a novel PCR primer targeting archaeal 16S rRNA genes. FEMS Microbiol Lett 2011;319:34–43 [CrossRef][PubMed]
    [Google Scholar]
  17. Takayanagi S, Kawasaki H, Sugimori K, Yamada T, Sugai A et al. Sulfolobus hakonensis sp. nov., a novel species of acidothermophilic archaeon. Int J Syst Bacteriol 1996;46:377–382 [CrossRef][PubMed]
    [Google Scholar]
  18. Kurosawa N, Itoh YH, Itoh T. Reclassification of Sulfolobus hakonensis Takayanagi et al. 1996 as Metallosphaera hakonensis comb. nov. based on phylogenetic evidence and DNA G+C content. Int J Syst Evol Microbiol 2003;53:1607–1608 [CrossRef][PubMed]
    [Google Scholar]
  19. Sakai HD, Kurosawa N. Exploration and isolation of novel thermophiles in frozen enrichment cultures derived from a terrestrial acidic hot spring. Extremophiles 2016;20:207–214 [CrossRef][PubMed]
    [Google Scholar]
  20. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979;43:260–296[PubMed]
    [Google Scholar]
  21. Huber G, Drobner E, Huber H, Stetter KO. Growth by aerobic oxidation of molecular hydrogen in archaea — a metabolic property so far unknown for this domain. Syst Appl Microbiol 1992;15:502–504 [CrossRef]
    [Google Scholar]
  22. Sugai A, Uda I, Itoh YH, Itoh T. The core lipid composition of the 17 strains of hyperthermophilic archaea, Thermococcales. J Oleo Sci 2004;53:41–44 [CrossRef]
    [Google Scholar]
  23. Itoh YH, Kurosawa N, Uda I, Sugai A, Tanoue S et al. Metallosphaera sedula TA-2, a calditoglycerocaldarchaeol deletion strain of a thermoacidophilic archaeon. Extremophiles 2001;5:241–245 [CrossRef][PubMed]
    [Google Scholar]
  24. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218 [CrossRef]
    [Google Scholar]
  25. Katayama-Fujimura Y, Komatsu Y, Kuraishi H, Kaneko T. Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 1984;48:3169–3172 [CrossRef]
    [Google Scholar]
  26. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  28. Nishihara M, Morii H, Koga Y. Structure determination of a quartet of novel tetraether lipids from Methanobacterium thermoautotrophicum. J Biochem 1987;101:1007–1015 [CrossRef][PubMed]
    [Google Scholar]
  29. Sugai A, Sakuma R, Fukuda I, Kurosawa N, Itoh YH et al. The structure of the core polyol of the ether lipids from Sulfolobus acidocaldarius. Lipids 1995;30:339–344 [CrossRef][PubMed]
    [Google Scholar]
  30. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  31. Brierley CL, Brierley JA. A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Can J Microbiol 1973;19:183–188 [CrossRef][PubMed]
    [Google Scholar]
  32. Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H et al. The Sulfolobus-‘caldariella’ group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 1980;125:259–269 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001881
Loading
/content/journal/ijsem/10.1099/ijsem.0.001881
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error