1887

Abstract

A Gram-stain-positive, aerobic, non-motile, rod-shaped, non-endospore-forming bacterial strain, 10C, was isolated from Lonar soda lake in India. Based on the 16S rRNA gene sequence analysis, this strain was identified as belonging to the genus and was most closely related to the type strains of (99.1 %, sequence similarity), (96.9 %), (96.9 %) and related of the genus (<96.6 %, sequence similarity). However, the DNA–DNA relatedness of strain 10C with KCTC 19283 was only 34.6±0.9. The DNA G+C content of strain 10C was 68.6 mol%. Strain 10C was an aerobic microbe with optimal growth at 37 °C, pH 7.5–8.0 and 5–6 % (w/v) NaCl. The cell-wall peptidoglycan of strain 10C was of the type A4α (-Lys–-Glu). The major polar lipids present were phosphatidylglycerol, diphosphatidylglycerol and phosphatidylcholine. The major isoprenoid quinones were MK-7, MK-8 and MK-9. Major fatty acids of strain 10C were anteiso-C, anteiso-C and iso-C. The results of phylogenetic, chemotaxonomic and biochemical tests allowed a clear differentiation of strain 10C, which represents a novel member of the genus for which the name sp. nov. is proposed. The type strain is 10C (=LMG 29100=KCTC 39636=CGMCC 1.15388).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001876
2017-06-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/6/1861.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001876&mimeType=html&fmt=ahah

References

  1. Stackebrandt E, Koch C, Gvozdiak O, Schumann P. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 1995;45:682–692 [CrossRef][PubMed]
    [Google Scholar]
  2. Zhang G, Zhang Y, Yin X, Wang S. Nesterenkonia alkaliphila sp. nov., an alkaliphilic, halotolerant actinobacteria isolated from the western Pacific Ocean. Int J Syst Evol Microbiol 2015;65:516–521 [CrossRef][PubMed]
    [Google Scholar]
  3. Parte AC. 2016; List of prokaryotic names with standing in nomenclature. www.bacterio.net
  4. Mota RR, Márquez MC, Arahal DR, Mellado E, Ventosa A. Polyphasic taxonomy of Nesterenkonia halobia. Int J Syst Bacteriol 1997;47:1231–1235 [CrossRef][PubMed]
    [Google Scholar]
  5. Collins MD, Lawson PA, Labrenz M, Tindall BJ, Weiss N et al. Nesterenkonia lacusekhoensis sp. nov., isolated from hypersaline Ekho Lake, East Antarctica, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol 2002;52:1145–1150 [CrossRef][PubMed]
    [Google Scholar]
  6. Li WJ, Chen HH, Zhang YQ, Schumann P, Stackebrandt E et al. Nesterenkonia halotolerans sp. nov. and Nesterenkonia xinjiangensis sp. nov., actinobacteria from saline soils in the west of China. Int J Syst Evol Microbiol 2004;54:837–841 [CrossRef][PubMed]
    [Google Scholar]
  7. Li WJ, Chen HH, Kim CJ, Zhang YQ, Park DJ et al. Nesterenkonia sandarakina sp. nov. and Nesterenkonia lutea sp. nov., novel actinobacteria, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol 2005;55:463–466 [CrossRef][PubMed]
    [Google Scholar]
  8. Delgado O, Quillaguamán J, Bakhtiar S, Mattiasson B, Gessesse A et al. Nesterenkonia aethiopica sp. nov., an alkaliphilic, moderate halophile isolated from an Ethiopian soda lake. Int J Syst Evol Microbiol 2006;56:1229–1232 [CrossRef][PubMed]
    [Google Scholar]
  9. Yoon JH, Jung SY, Kim W, Nam SW, Oh TK. Nesterenkonia jeotgali sp. nov., isolated from Jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2006;56:2587–2592 [CrossRef][PubMed]
    [Google Scholar]
  10. Li WJ, Zhang YQ, Schumann P, Liu HY, Yu LY et al. Nesterenkonia halophila sp. nov., a moderately halophilic, alkalitolerant actinobacterium isolated from a saline soil. Int J Syst Evol Microbiol 2008;58:1359–1363 [CrossRef][PubMed]
    [Google Scholar]
  11. Luo HY, Miao LH, Fang C, Yang PL, Wang YR et al. Nesterenkonia flava sp. nov., isolated from paper-mill effluent. Int J Syst Evol Microbiol 2008;58:1927–1930 [CrossRef][PubMed]
    [Google Scholar]
  12. Luo HY, Wang YR, Miao LH, Yang PL, Shi PJ et al. Nesterenkonia alba sp. nov., an alkaliphilic actinobacterium isolated from the black liquor treatment system of a cotton pulp mill. Int J Syst Evol Microbiol 2009;59:863–868 [CrossRef][PubMed]
    [Google Scholar]
  13. Govender L, Naidoo L, Setati ME. Nesterenkonia suensis sp. nov., a haloalkaliphilic actinobacterium isolated from a salt Pan. Int J Syst Evol Microbiol 2013;63:41–46 [CrossRef][PubMed]
    [Google Scholar]
  14. Wang HF, Zhang YG, Chen JY, Hozzein WN, Li L et al. Nesterenkonia rhizosphaerae sp. nov., an alkaliphilic actinobacterium isolated from rhizosphere soil in a saline-alkaline desert. Int J Syst Evol Microbiol 2014;64:4021–4026 [CrossRef][PubMed]
    [Google Scholar]
  15. Liu JM, Tuo L, Habden X, Guo L, Jiang ZK et al. Nesterenkonia populi sp. nov., an actinobacterium isolated from Populus euphratica. Int J Syst Evol Microbiol 2015;65:1474–1479 [CrossRef][PubMed]
    [Google Scholar]
  16. Finore I, Orlando P, di Donato P, Leone L, Nicolaus B et al. Nesterenkonia aurantiaca, sp. nov., an alkaliphilic actinobacterium isolated from cape king (Antarctica). Int J Syst Evol Microbiol 2016;1554–1560 [CrossRef][PubMed]
    [Google Scholar]
  17. Joshi AA, Kanekar PP, Kelkar AS, Shouche YS, Vani AA et al. Cultivable bacterial diversity of alkaline Lonar Lake, India. Microb Ecol 2008;55:163–172 [CrossRef][PubMed]
    [Google Scholar]
  18. Malu Ra, Dhabhade Ds, Kodarkar Ms. Diversity in Lonar Lake. J Aquat Bio 2000;15:16–18
    [Google Scholar]
  19. Sultanpuram VR, Mothe T, Mohammed F. Salisediminibacterium haloalkalitolerans sp. nov., isolated from Lonar Soda Lake, India, and a proposal for reclassification of Bacillus locisalis as Salisediminibacterium locisalis comb. nov., and the emended description of the genus Salisediminibacterium and of the species Salisediminibacterium halotolerans. Arch Microbiol 2015;197:553–560 [CrossRef][PubMed]
    [Google Scholar]
  20. Antony CP, Kumaresan D, Hunger S, Drake HL, Murrell JC et al. Microbiology of Lonar Lake and other soda lakes. Isme J 2013;7:468–476 [CrossRef][PubMed]
    [Google Scholar]
  21. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218 [CrossRef]
    [Google Scholar]
  22. Reddy SV, Aspana S, Tushar DL, Sasikala C, Ramana C. Spirochaeta sphaeroplastigenens sp. nov., a halo-alkaliphilic, obligately anaerobic spirochaete isolated from soda lake Lonar. Int J Syst Evol Microbiol 2013;63:2223–2228 [CrossRef][PubMed]
    [Google Scholar]
  23. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  24. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef]
    [Google Scholar]
  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  27. Tourova TP, Antonov AS. Identification of microorganisms by rapid DNA-DNA hybridization. Meth Microbiol 1987;19:333–355[CrossRef]
    [Google Scholar]
  28. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  29. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  30. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;4:152–155
    [Google Scholar]
  31. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP, Gӧker M, Sprӧer C. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013;195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  32. Smibert RM, Krieg NR. General characterization. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Microbiology Washington, DC: American Society for Microbiology; 1981; pp.409–443
    [Google Scholar]
  33. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  34. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods. Microbiology 1982;128:1959–1968 [CrossRef]
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  36. Kates M. Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids Amsterdam: Elsevier; 1986; pp.330–348
    [Google Scholar]
  37. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  38. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  39. Oren A, Duker S, Ritter S. The polar lipid composition of Walsby's square bacterium. FEMS Microbiol Lett 1996;138:135–140 [CrossRef]
    [Google Scholar]
  40. Kates M. Techniques of Lipidology New York: Elsevier; 1972; pp.330–342
    [Google Scholar]
  41. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. Journal of Applied Bacteriology 1983;54:31–36 [CrossRef]
    [Google Scholar]
  42. Schleifer Kh. Analysis of the chemical composition and primary structure of murein. Methods Microbiol 1985;18:123–156[CrossRef]
    [Google Scholar]
  43. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36:407–477[PubMed]
    [Google Scholar]
  44. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  45. Schumann P. Peptidoglycan structure. In Rainey F, Oren A. (editors) Taxonomy of Prokaryotes, Methods in Microbiologyvol. 38 London: Academic Press; 2011; pp.101–129[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001876
Loading
/content/journal/ijsem/10.1099/ijsem.0.001876
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error