1887

Abstract

A Gram-stain-negative, rod-shaped bacterium, strain F01, was isolated from leaves of Tamarix chinensis Lour. The isolate grew optimally at 30 °C, at pH 7.0 and with 5.0 % (w/v) NaCl, and showed a high tolerance to manganese, lead, nickel, ferrous ions and copper ions. The major fatty acids were C18 : 1ω7c and C16 : 0, and the predominant respiratory quinone was Q-9. Polar lipids were dominated by diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, unidentified aminoglycolipids and phospholipids. The DNA G+C content was 65.8 %. Based on multilocus phylogenetic analysis, strain F01 belonged to the genus Salinicola , with highest 16S rRNA gene sequence similarity to Salinicola peritrichatus CGMCC 1.12381 (97.7 %). The level of DNA–DNA hybridization between strain F01 and closely related Salinicola strains was well below 70 %. According to the phenotypic, genetic and chemotaxonomic data, strain F01 is considered to represent a novel species in the genus Salinicola , for which the name Salinicola tamaricis sp. nov. is proposed. The type strain is F01 (=CCTCC AB 2015304=KCTC 42855).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001868
2017-06-12
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/6/1813.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001868&mimeType=html&fmt=ahah

References

  1. Anan'ina LN, Plotnikova EG, Gavrish Eiu, Demakov VA, Evtushenko LI. [Salinicola socius gen. nov., sp. nov., a moderately halophilic bacterium from a naphthalene-utilizing microbial association]. Mikrobiologiia 2007;76:369–376 [CrossRef][PubMed]
    [Google Scholar]
  2. de La Haba RR, Sánchez-Porro C, Márquez MC, Ventosa A. Taxonomic study of the genus Salinicola: transfer of Halomonas salaria and Chromohalobacter salarius to the genus Salinicola as Salinicola salarius comb. nov. and Salinicola halophilus nom. nov., respectively. Int J Syst Evol Microbiol 2010;60:963–971 [CrossRef][PubMed]
    [Google Scholar]
  3. Kim KK, Jin L, Yang HC, Lee ST. Halomonas gomseomensis sp. nov., Halomonas janggokensis sp. nov., Halomonas salaria sp. nov. and Halomonas denitrificans sp. nov., moderately halophilic bacteria isolated from saline water. Int J Syst Evol Microbiol 2007;57:675–681 [CrossRef][PubMed]
    [Google Scholar]
  4. Aguilera M, Cabrera A, Incerti C, Fuentes S, Russell NJ et al. Chromohalobacter salarius sp. nov., a moderately halophilic bacterium isolated from a solar saltern in Cabo de Gata, Almeria, southern Spain. Int J Syst Evol Microbiol 2007;57:1238–1242 [CrossRef][PubMed]
    [Google Scholar]
  5. Raju K, Vaiyapuri Ramalingam P, Sekar J. Salinicola rhizosphaerae sp. nov., isolated from the rhizosphere of the mangrove Avicennia marina L. Int J Syst Evol Microbiol 2016;66:1074–1079 [CrossRef]
    [Google Scholar]
  6. Huo YY, Meng FX, Xu L, Wang CS, Xu XW. Salinicola peritrichatus sp. nov., isolated from deep-sea sediment. Antonie Van Leeuwenhoek 2013;104:55–62 [CrossRef][PubMed]
    [Google Scholar]
  7. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic gram-negative rods. Microbiology 1982;128:1959–1968 [CrossRef]
    [Google Scholar]
  8. Peix A, Rivas R, Mateos PF, Martínez-Molina E, Rodríguez-Barrueco C et al. Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro. Int J Syst Evol Microbiol 2003;53:2067–2072 [CrossRef][PubMed]
    [Google Scholar]
  9. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007;23:673–679 [CrossRef][PubMed]
    [Google Scholar]
  10. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  11. Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science 1997;278:631–637 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  13. de La Haba RR, Márquez MC, Papke RT, Ventosa A. Multilocus sequence analysis of the family Halomonadaceae. Int J Syst Evol Microbiol 2012;62:520–538 [CrossRef][PubMed]
    [Google Scholar]
  14. de La Haba RR, Arahal DR, Márquez MC, Ventosa A. Phylogenetic relationships within the family Halomonadaceae based on comparative 23S and 16S rRNA gene sequence analysis. Int J Syst Evol Microbiol 2010;60:737–748 [CrossRef][PubMed]
    [Google Scholar]
  15. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  21. Myers EW, Miller W. Optimal alignments in linear space. Comput Appl Biosci 1988;4:11–17 [CrossRef][PubMed]
    [Google Scholar]
  22. Lepcha RT, Poddar A, Schumann P, das SK. Comparative 16S rRNA signatures and multilocus sequence analysis for the genus Salinicola and description of Salinicola acroporae sp. nov., isolated from coral Acropora digitifera. Antonie Van Leeuwenhoek 2015;108:59–73 [CrossRef][PubMed]
    [Google Scholar]
  23. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  24. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  25. Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ et al. Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 2007;57:2436–2446 [CrossRef][PubMed]
    [Google Scholar]
  26. de la Haba RR, Arahal DR, Sánchez-Porro C, Ventosa A. The Family Halomonadaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. et al (editors) The Prokaryotes-Gammaproteobacteria, 4rd ed. Heidelberg: Springer; 2014; pp.325–352
    [Google Scholar]
  27. Claus D. A standardized gram staining procedure. World J Microbiol Biotechnol 1992;8:451–452 [CrossRef][PubMed]
    [Google Scholar]
  28. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982;16:772–774[PubMed]
    [Google Scholar]
  29. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002;25:360–375 [CrossRef][PubMed]
    [Google Scholar]
  30. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966;45:493–496[PubMed]
    [Google Scholar]
  31. Stead DE, Sellwood JE, Wilson J, Viney I. Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Microbiol 1992;72:315–321 [CrossRef]
    [Google Scholar]
  32. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001868
Loading
/content/journal/ijsem/10.1099/ijsem.0.001868
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error