1887

Abstract

The taxonomic position of two isolates belonging to the genus was determined. The first isolate, R-53603, was obtained from purulent discharge from the toe of a cellulitis patient in Kuwait. Comparative 16S rRNA gene sequence analysis revealed 99.87 % similarity of R-53603 with environmental isolate P031 (=R-53745) originating from activated sludge in Singapore. The two isolates were phylogenetically positioned on the same sub-branch. Highest 16S rRNA gene sequence similarity was found with the type strains of (98.23 %), (97.78 %) and (97.14 %). DNA–DNA hybridizations revealed <70 % relatedness between the two isolates and the type strains of the close phylogenetic neighbours (18.0–24.5 %), (20.3–25.9 %) and (13.2–20.0 %). The high relative contribution of iso-C, iso-C 3-OH and summed feature 3 (iso-C 2-OH and/or Cω7) in the cellular fatty acid profiles of R-53603 and R-53745, the presence of sphingophospholipids, MK-7 as the dominant menaquinone and phosphatidylethanolamine as the major polar lipid in strain R-53603 are typical chemotaxonomic characteristics for members of the genus . Phenotypic features most useful for differentiation of the two novel strains from the most closely related species include growth on MacConkey agar, and utilization of stachyose, guanidine HCl and lithium chloride in Biolog GEN III tests. Strains R-53603 and R-53745 thus represent a novel species, for which the name sp. nov. is proposed. The type strain is R-53603 (=LMG 28764=DSM 102028).

Keyword(s): cellulitis , sludge and Sphingobacterium
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001832
2017-05-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1415.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001832&mimeType=html&fmt=ahah

References

  1. Swartz M. Cellulitis. N Engl J Med 2004; 350:904–912 [CrossRef]
    [Google Scholar]
  2. Gunderson CG. Cellulitis: definition, etiology, and clinical features. Am J Med 2011; 124:1113–1122 [View Article][PubMed]
    [Google Scholar]
  3. Chira S, Miller LG. Staphylococcus aureus is the most common identified cause of cellulitis: a systematic review. Epidemiol Infect 2010; 138:313–317 [View Article][PubMed]
    [Google Scholar]
  4. Gunderson CG, Martinello RA. A systematic review of bacteremias in cellulitis and erysipelas. J Infect 2012; 64:148–155 [View Article][PubMed]
    [Google Scholar]
  5. Holmes B. The Genera Flavobacterium, Sphingobacterium and Weeksella. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H et al. (editors) The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. vol. 4 New York: Springer; 1992 pp. 3620–3630
    [Google Scholar]
  6. Marinella MA. Cellulitis and sepsis due to Sphingobacterium. Jama 2002; 288:1985[PubMed] [CrossRef]
    [Google Scholar]
  7. Tronel H, Plesiat P, Ageron E, Grimont PA. Bacteremia caused by a novel species of Sphingobacterium. Clin Microbiol Infect 2003; 9:1242–1244 [View Article][PubMed]
    [Google Scholar]
  8. Tan C, Koh K, Xie C, Zhang J, Tan X et al. Community quorum sensing signalling and quenching: microbial granular biofilm assembly. Npj Biofilms Microbiomes 2015; 1:15006 [CrossRef]
    [Google Scholar]
  9. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  10. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucl Acids Res 2007; 35:3100–3108 [View Article]
    [Google Scholar]
  11. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  12. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  13. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  15. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992; 35:367–375 [View Article][PubMed]
    [Google Scholar]
  16. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989; 8:151–156 [View Article]
    [Google Scholar]
  17. Versalovic J, Schneider M, de Bruyn F, Lupski J. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. meth mol cell biol 1994; 5:25–40
    [Google Scholar]
  18. Gevers D, Huys G, Swings J. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 2001; 205:31–36 [View Article][PubMed]
    [Google Scholar]
  19. Marmur J. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  20. Goris J, Suzuki K-Ichiro, Vos PD, Nakase T, Kersters K. Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 1998; 44:1148–1153 [View Article]
    [Google Scholar]
  21. Cashion P, Holder-Franklin MA, Mccully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977; 81:461–466 [View Article][PubMed]
    [Google Scholar]
  22. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  23. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  24. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [View Article][PubMed]
    [Google Scholar]
  25. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  26. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  27. Yoo SH, Weon HY, Jang HB, Kim BY, Kwon SW et al. Sphingobacterium composti sp. nov., isolated from cotton-waste composts. Int J Syst Evol Microbiol 2007; 57:1590–1593 [View Article][PubMed]
    [Google Scholar]
  28. Wei W, Zhou Y, Wang X, Huang X, Lai R. Sphingobacterium anhuiense sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2008; 58:2098–2101 [View Article][PubMed]
    [Google Scholar]
  29. Choi HA, Lee SS. Sphingobacterium kyonggiense sp. nov., isolated from chloroethene-contaminated soil, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium mizutaii. Int J Syst Evol Microbiol 2012; 62:2559–2564 [View Article][PubMed]
    [Google Scholar]
  30. Schmidt VS, Wenning M, Scherer S. Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. Int J Syst Evol Microbiol 2012; 62:1506–1511 [View Article][PubMed]
    [Google Scholar]
  31. Tindall B. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [CrossRef]
    [Google Scholar]
  32. Tindall B. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [CrossRef]
    [Google Scholar]
  33. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  34. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007 pp. 330–393
    [Google Scholar]
  35. Kato M, Muto Y, Tanaka-Bandoh K, Watanabe K, Ueno K. Sphingolipid composition in Bacteroides species. Anaerobe 1995; 1:135–139 [View Article][PubMed]
    [Google Scholar]
  36. Kämpfer P, Glaeser SP, Kleinhagauer T, Mcinroy JA, Busse H-J. Sphingobacterium zeae sp. nov., an endophyte of maize. Int J Syst Evol Microbiol 2016; 66:2643–2649 [View Article]
    [Google Scholar]
  37. Cowan ST, Barrow G I, Steel KJ, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press; 2003
    [Google Scholar]
  38. Kim KH, Ten LN, Liu QM, Im WT, Lee ST. Sphingobacterium daejeonense sp. nov., isolated from a compost sample. Int J Syst Evol Microbiol 2006; 56:2031–2036 [View Article][PubMed]
    [Google Scholar]
  39. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 1983; 33:580–598 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.001832
Loading
/content/journal/ijsem/10.1099/ijsem.0.001832
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error