1887

Abstract

Bacterial strains MCy10943 and MCy10944 were isolated in 2014 from dried Nepalese soil samples collected in 2013 from Phukot, Kalikot, Western Nepal, and Godawari, Lalitpur, Central Nepal. The novel organisms showed typical myxobacterial growth characteristics, which include swarming colony and fruiting body formation on solid surfaces, and a predatory ability to lyse micro-organisms. The strains were aerobic, mesophilic, chemoheterotrophic and showed resistance to various antibiotics. The major cellular fatty acids common to both organisms were C17 : 0 2-OH, iso-C15 : 0, C16 : 1 and iso-C17 : 0. The G+C content of the genomic DNA was 72–75 mol%. Phylogenetic analysis showed that the strains belong to the family Cystobacteraceae , suborder Cystobacterineae, order Myxococcales . The 16S rRNA gene sequences of both strains showed 97–98 % similarity to Archangium gephyra DSM 2261 and Cystobacter violaceus DSM 14727, and 96.7–97 % to Cystobacter fuscus DSM 2262 and Angiococcus disciformis DSM 52716. Polyphasic taxonomic characterization suggested that strains MCy10943 and MCy10944 represent two distinct species of a new genus, for which the names Vitiosangium cumulatum gen. nov., sp. nov. and Vitiosangium subalbum sp. nov. are proposed. The type strain of Vitiosangium cumulatum is MCy10943 (=DSM 102952=NCCB 100600) while that for Vitiosangium subalbum is MCy10944 (=DSM 102953=NCCB 100601). In addition, emended descriptions of the genera Archangium and Angiococcus , and of the family Cystobacteraceae are provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001829
2017-06-05
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1422.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001829&mimeType=html&fmt=ahah

References

  1. Reichenbach H. The ecology of the myxobacteria. Environ Microbiol 1999;1:15–21 [CrossRef][PubMed]
    [Google Scholar]
  2. Weissman KJ, Müller R. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep 2010;27:1276–1295 [CrossRef][PubMed]
    [Google Scholar]
  3. Wenzel SC, Müller R. The biosynthetic potential of myxobacteria and their impact in drug discovery. Curr Opin Drug Discov Devel 2009;12:220–230[PubMed]
    [Google Scholar]
  4. Dawid W. Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 2000;24:403–427 [CrossRef][PubMed]
    [Google Scholar]
  5. Garcia RO, Krug D, Müller R. Chapter 3. discovering natural products from myxobacteria with emphasis on rare producer strains in combination with improved analytical methods. Methods Enzymol 2009;458:59–91 [CrossRef][PubMed]
    [Google Scholar]
  6. Garcia R, Gerth K, Stadler M, Dogma IJ, Müller R. Expanded phylogeny of myxobacteria and evidence for cultivation of the 'unculturables'. Mol Phylogenet Evol 2010;57:878–887 [CrossRef][PubMed]
    [Google Scholar]
  7. Shimkets L, Woese CR. A phylogenetic analysis of the myxobacteria: basis for their classification. Proc Natl Acad Sci USA 1992;89:9459–9463 [CrossRef][PubMed]
    [Google Scholar]
  8. Garcia R, Gemperlein K, Müller R. Minicystis rosea gen. nov., sp. nov., a polyunsaturated fatty acid-rich and steroid-producing soil myxobacterium. Int J Syst Evol Microbiol 2014;64:3733–3742 [CrossRef][PubMed]
    [Google Scholar]
  9. Garcia R, Gemperlein K, Müller R, Stadler M. Aetherobacter fasciculatus gen. nov., sp. nov. and Aetherobacter rufus sp. nov., novel myxobacteria with promising biotechnological applications. Int J Syst Evol Microbiol 2016;66:928–938 [CrossRef]
    [Google Scholar]
  10. Garcia R, Pistorius D, Stadler M, Müller R. Fatty acid-related phylogeny of myxobacteria as an approach to discover polyunsaturated omega-3/6 fatty acids. J Bacteriol 2011;193:1930–1942 [CrossRef][PubMed]
    [Google Scholar]
  11. Shimkets LJ, Dworkin M, Reichenbach H. The Myxobacteria. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes, 3rd ed.vol. 7 New York: Springer; 2006; pp.31–115[CrossRef]
    [Google Scholar]
  12. Garcia R, Müller R. The family Myxococcaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes, 4th ed.vol. 10 Heidelberg: Springer; 2014; pp.191–212[CrossRef]
    [Google Scholar]
  13. Awal RP, Garcia R, Müller R. Racemicystis crocea gen. nov., sp. nov., a soil myxobacterium in the family Polyangiaceae. Int J Syst Evol Microbiol 2016;66:2389–2395 [CrossRef][PubMed]
    [Google Scholar]
  14. Gerhardt P, Murray R. G. E, Costilow R. N, Nester E. W, Wood W. A, Krieg N. R, Phillips G. B. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981
    [Google Scholar]
  15. Mccurdy HD. Studies on the taxonomy of the Myxobacterales. I. record of Canadian isolates and survey of methods. Can J Microbiol 1969;15:1453–1461 [CrossRef][PubMed]
    [Google Scholar]
  16. Ringel SM, Greenough RC, Roemer S, Connor D, Gutt AL, Strandtmann M et al. Ambruticin (W7783), a new antifungal antibiotic. J Antibiot 1977;30:371–375 [CrossRef][PubMed]
    [Google Scholar]
  17. Lang E, Kroppenstedt RM, Sträubler B, Stackebrandt E. Reclassification of Myxococcus flavescens Yamanaka, et al. 1990VP as a later synonym of Myxococcus virescens Thaxter 1892AL. Int J Syst Evol Microbiol 2008;58:2607–2609 [CrossRef][PubMed]
    [Google Scholar]
  18. Gemperlein K, Rachid S, Garcia RO, Wenzel SC, Müller R. Polyunsaturated fatty acid biosynthesis in Myxobacteria: different PUFA synthases and their product diversity. Chem Sci 2014;5:1733–1741 [CrossRef]
    [Google Scholar]
  19. Shimelis O, Giese RW. Nuclease P1 digestion/high-performance liquid chromatography, a practical method for DNA quantitation. J Chromatogr A 2006;1117:132–136 [CrossRef][PubMed]
    [Google Scholar]
  20. Li G, Shimelis O, Zhou X, Giese RW. Scaled-down nuclease P1 for scaled-up DNA digestion. Biotechniques 2003;34:908–909[PubMed]
    [Google Scholar]
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017; (in press) [CrossRef][PubMed]
    [Google Scholar]
  22. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  23. Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 1985;22:160–174 [CrossRef][PubMed]
    [Google Scholar]
  24. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003;52:696–704 [CrossRef][PubMed]
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  26. Drummond AJ, Ashton B, Buxton S, Cheung M, Heled J. et al 2010; Geneious pro 5.0.2. www.geneious.com
  27. Reichenbach H. Order VIII. Myxococcales Tchan, Pochon and Prévot 1948, 398AL. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2C New York: Springer; 2005; pp.1059–1072
    [Google Scholar]
  28. Spröer C, Reichenbach H, Stackebrandt E. The correlation between morphological and phylogenetic classification of myxobacteria. Int J Syst Bacteriol 1999;49:1255–1262 [CrossRef][PubMed]
    [Google Scholar]
  29. Jahn E. I. Fam. Archangiaceae. In Jahn E. (editor) Beiträge Zur Botanischen Protistologie. I. Die Polyangiden Leipzig, Germany: Borntraeger Verlag; 1924; pp.66–72
    [Google Scholar]
  30. McCurdy HD. Family II. Archangiaceae Jahn 1924, 66. In Buchanan RE, Gibbons NE. (editors) Bergey’s Manual of Determinative Bacteriology, 8th ed. Baltimore: Williams & Wilkins; 1974; pp.83–86
    [Google Scholar]
  31. Thaxter R. Notes on the Myxobacteriaceae. Botanical Gazette 1904;37:405–416[CrossRef]
    [Google Scholar]
  32. Hook LA, Larkin JM, Brockman ER. Isolation, characterization, and emendation of description of Angiococcus disciformis (Thaxter 1904) Jahn 1924 and proposal of a neotype strain. Int J Syst Bacteriol 1980;30:135–142 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001829
Loading
/content/journal/ijsem/10.1099/ijsem.0.001829
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error