1887

Abstract

A Gram-stain-negative, smooth, opaque, white-pigmented, helical-shaped, catalase- and oxidase-positive bacterium that was motile by means of bipolar tufts of flagella and grew under microaerophilic conditions, was isolated from a soil sample of a reed pond in Shangqiu, Henan province, PR China. The strain, designated THG-SQE6, grows well at 25–42 °C, pH 6.5–7.5 and in the presence of 0–1 % (w/v) NaCl. hylogenetic analysis based on 16S rRNA gene sequences showed that strain THG-SQE6 was most closely related to IAM 13944 (97.23 % 16S rRNA gene sequence similarity). The DNA G+C content of strain THG-SQE6 was 53.10 mol%. In DNA–DNA hybridization experiments, the DNA–DNA relatedness between strain THG-SQE6 and its closest phylogenetic neighbour was below 62.6 %. The predominant isoprenoid quinone detected in strain THG-SQE6 was ubiquinone-8 (Q-8). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylserine, an unidentified phospholipid, an unidentified aminolipid and two unidentified lipids. The major fatty acids were identified as C 3-OH, C, C, summed feature 3 and summed feature 8. These data support the affiliation of strain THG-SQE6 to the genus . Based on findings from the phenotypic, genotypic and phylogenetic characterization of strain THG-SQE6, a novel species of the genus sp. nov. is proposed. The type strain is THG-SQE6 (=KACC 18846=CCTCC AB 2016081).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001802
2017-05-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1312.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001802&mimeType=html&fmt=ahah

References

  1. Hylemon PB, Wells JS, Krieg NR, Jannasch HW. The genus Spirillum: a taxonomic study. Int J Syst Bacteriol 1973;23:340–380 [CrossRef]
    [Google Scholar]
  2. Krieg NR. Biology of the chemoheterotrophic spirilla. Bacteriol Rev 1976;40:55–115[PubMed]
    [Google Scholar]
  3. Krieg NR. The genera Spirillum, Aquaspirillum and Oceanospirillum. In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG. et al. (editors) The Prokaryotes Berlin: Springer-Verlag; 1981; pp.595–608[CrossRef]
    [Google Scholar]
  4. Pot B, Willems A, Gillis M, de Ley J. Intra- and intergeneric relationships of the genus Aquaspirillum: Prolinoborus, a new genus for Aquaspirillum fasciculus, with the species Prolinoborus fasciculus comb. nov. Int J Syst Bacteriol 1992;42:44–57 [CrossRef]
    [Google Scholar]
  5. Hamana K, Sakane T, Yokota A. Polyamine analysis of the genera Aquaspirillum, Magnetospirillum, Oceanospirillum and Spirillum. J Gen Appl Microbiol 1994;40:75–82 [CrossRef]
    [Google Scholar]
  6. Sakane T, Yokota A. Chemotaxonomic investigation of heterotrophic, aerobic and microaerophilic spirilla, the genera Aquaspirillum, Magnetospirillum and Oceanospirillum. Syst Appl Microbiol 1994;17:128–134 [CrossRef]
    [Google Scholar]
  7. Ding L, Yokota A. Phylogenetic analysis of the genus Aquaspirillum based on 16S rRNA gene sequences. FEMS Microbiol Lett 2002;212:165–169[PubMed][CrossRef]
    [Google Scholar]
  8. Schleifer KH, Schüler D, Spring S, Weizenegger M, Amann R et al. The genus Magnetospirillum gen. nov. description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst Appl Microbiol 1991;14:379–385 [CrossRef]
    [Google Scholar]
  9. Cleenwerck I, de Wachter M, Hoste B, Janssens D, Swings J. Aquaspirillum dispar Hylemon et al. 1973 and Microvirgula aerodenitrificans Patureau et al. 1998 are subjective synonyms. Int J Syst Evol Microbiol 2003;53:1457–1459 [CrossRef][PubMed]
    [Google Scholar]
  10. Ding L, Yokota A. Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov. Int J Syst Evol Microbiol 2004;54:2223–2230 [CrossRef][PubMed]
    [Google Scholar]
  11. Grabovich M, Gavrish E, Kuever J, Lysenko AM, Podkopaeva D et al. Proposal of Giesbergeria voronezhensis gen. nov., sp. nov. and G. kuznetsovii sp. nov. and reclassification of [Aquaspirillum] anulus, [A.] sinuosum and [A.] giesbergeri as Giesbergeria anulus comb. nov., G. Sinuosa comb. nov. and G. giesbergeri comb. nov., and [Aquaspirillum] metamorphum and [A.] psychrophilum as Simplicispira metamorpha gen. nov., comb. nov. and S. Psychrophila comb. nov. Int J Syst Evol Microbiol 2006;56:569–576 [CrossRef][PubMed]
    [Google Scholar]
  12. Yoon JH, Kang SJ, Park S, Lee SY, Oh TK. Reclassification of Aquaspirillum itersonii and Aquaspirillum peregrinum as Novispirillum itersonii gen. nov., comb. nov. and Insolitispirillum peregrinum gen. nov., comb. nov. Int J Syst Evol Microbiol 2007;57:2830–2835 [CrossRef][PubMed]
    [Google Scholar]
  13. Leifson E. The bacterial flora of distilled and stored water. Int Bull Bacteriol Nomencl Taxon 1962;12:161–170
    [Google Scholar]
  14. Pot B, Gillis M, De Ley J. The Genus Aquaspirillum. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. et al (editors) The Prokaryotesvol. 5 New York: Springer; 2006; pp.710–722[CrossRef]
    [Google Scholar]
  15. Giesberger G. Beiträge Zur Kenntnis Der Gattung Spirillum Ehrenberg The Netherlands: Utrecht University; 1936
    [Google Scholar]
  16. Myers J. Studies on the spirilleae: methods of isolation and identification. J Bacteriol 1940;40:705–721[PubMed]
    [Google Scholar]
  17. Pot B, Gillis M. Genus III. Aquaspirillum Hylemon, Wells, Krieg and Jannasch 1973b, 36IAL. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 New York: Springer; 2005; pp.801–823[CrossRef]
    [Google Scholar]
  18. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  19. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  21. Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  22. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983;[CrossRef]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Bio Evol 1987;4:406–425
    [Google Scholar]
  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  26. Müller OF. Animalcula infusoria fluvia tilia et marina, quae detexit, systematice descripsit et ad vivum delineari curavit. Typis Nicolai Mölleri 1786;1:367
    [Google Scholar]
  27. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980;8:87–91 [CrossRef]
    [Google Scholar]
  28. Moore DD, Dowhan D. Preparation and analysis of DNA. In Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG. et al. (editors) Current Protocols in Molecular Biology New York: Wiley; 1995; pp.2–11
    [Google Scholar]
  29. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  30. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  31. Gillis M, de Ley J, de Cleene M. The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 1970;12:143–153 [CrossRef][PubMed]
    [Google Scholar]
  32. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[CrossRef]
    [Google Scholar]
  33. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  34. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977;27:104–117 [CrossRef]
    [Google Scholar]
  35. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  36. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996;42:457–469 [CrossRef]
    [Google Scholar]
  37. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981;45:316–354[PubMed]
    [Google Scholar]
  38. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983;54:31–36 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001802
Loading
/content/journal/ijsem/10.1099/ijsem.0.001802
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error