1887

Abstract

A facultatively anaerobic, Gram-stain-negative, rod-shaped, nitrogen-fixing, endophytic bacterial strain designated MP23 was isolated from the roots of Phragmites karka growing in Chilika Lagoon, Odisha, India. Strain MP23 was slightly halophilic, and the optimal NaCl concentration and temperature for growth were 1 % and 30 °C, respectively. On the basis of 16S rRNA gene sequence similarities, strain MP23 was affiliated to the family Enterobacteriaceae and most closely related to Mangrovibacter yixingensis KCTC 42181 and Mangrovibacter plantisponsor DSM 19579 with 99.71 % similarity, followed by Salmonella enterica subsp. salamae DSM 9220 (97.22 %), Cronobacter condimenti LMG 26250 (97.14 %) and Salmonella enterica subsp. diarizonae DSM 14847 (97 %). Sequence analysis of 16S rRNA, hsp60, gyrB and rpoB genes showed that strain MP23 formed a phylogenetic cluster with M. yixingensis KCTC 42181 and M. plantisponsor DSM 19579 indicating that it belongs to the genus Mangrovibacter . The major cellular fatty acids were C16 : 0, C18 : 1ω6c and/or C18 : 1ω7c, C16 : 1ω6c and/or C16 : 1ω7c, C14 : 0, C14 : 0 3-OH and/or iso-C16 : 1 I and C17 : 0 cyclo. Polar lipids of strain MP23 consisted of phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content was 50.3 mol%. Based on experimental DNA–DNA hybridization values and average nucleotide identity derived from in silico comparison of whole-genome sequences, strain MP23 could be distinguished from its closest neighbours. We therefore conclude that strain MP23 represents a novel species of the genus Mangrovibacter for which the name Mangrovibacter phragmitis sp. nov. is proposed. The type strain is MP23 (=DSM 100250=KCTC 42580).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001789
2017-05-30
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1228.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001789&mimeType=html&fmt=ahah

References

  1. Kämpfer P, Ruppel S, Remus R. Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae. Syst Appl Microbiol 2005;28:213–221 [CrossRef][PubMed]
    [Google Scholar]
  2. Ruppel S, Hecht-Buchholz C, Remus R, Ortmann U, Schmelzer R. Settlement of the diazotrophic, phytoeffective bacterial strain Pantoea agglomerans on and within winter wheat: an investigation using ELISA and transmission electron microscopy. Plant Soil 1992;145:261–273 [CrossRef]
    [Google Scholar]
  3. Dalton DA, Kramer S, Azios N, Fusaro S, Cahill E et al. Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiol Ecol 2004;49:469–479 [CrossRef][PubMed]
    [Google Scholar]
  4. Markova YA, Romanenko AS, Dukhanina AV. Isolation of bacteria of the family Enterobacteriaceae from plant tissues. Microbiology 2005;74:575–578 [CrossRef][PubMed]
    [Google Scholar]
  5. Peng S, Zhou Q, Cai Z, Zhang Z. Phytoremediation of petroleum contaminated soils by Mirabilis jalapa L. in a greenhouse plot experiment. J Hazard Mater 2009;168:1490–1496 [CrossRef][PubMed]
    [Google Scholar]
  6. Zhang H, Guo SH, Sun B, Zhang J, Cheng MG et al. Mangrovibacter yixingensis sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2015;65:2447–2452 [CrossRef][PubMed]
    [Google Scholar]
  7. Rameshkumar N, Lang E, Nair S. Mangrovibacter plantisponsor gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from a mangrove-associated wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 2010;60:179–186 [CrossRef][PubMed]
    [Google Scholar]
  8. Srichandan S, Kim JY, Bhadury P, Barik SK, Muduli PR et al. Spatiotemporal distribution and composition of phytoplankton assemblages in a coastal tropical lagoon: Chilika, India. Environ Monit Assess 2015;187:47–17 [CrossRef][PubMed]
    [Google Scholar]
  9. Srichandan S, Kim JY, Kumar A, Mishra DR, Bhadury P et al. Interannual and cyclone-driven variability in phytoplankton communities of a tropical coastal lagoon. Mar Pollut Bull 2015;101:39–52 [CrossRef][PubMed]
    [Google Scholar]
  10. Brix H. Genetic diversity, ecophysiology and growth dynamics of reed (Phragmites australis). Aquatic Botany 1999;64:179–184[CrossRef]
    [Google Scholar]
  11. Lambertini C, Gustafsson MHG, Frydenberg J, Lissner J, Speranza M et al. A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Pl Syst Evol 2006;258:161–182 [CrossRef]
    [Google Scholar]
  12. Coombs JT, Franco CM. Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 2003;69:5603–5608[PubMed][CrossRef]
    [Google Scholar]
  13. Simmons Js. A culture medium for differentiating organisms of typhoid-colon aerogenes groups and for isolation of certain fungi. The Journal of Infectious Diseases 1926;39:209–214[CrossRef]
    [Google Scholar]
  14. Greene RA, Blum EF, Decoro CT, Fairchild RB, Kaplan MT et al. Rapid methods for the detection of motility. J Bacteriol 1951;62:347[PubMed]
    [Google Scholar]
  15. Lenaerts M, Alvarez-Pérez S, de Vega C, van Assche A, Johnson SD et al. Rosenbergiella australoborealis sp. nov., Rosenbergiella collisarenosi sp. nov. and Rosenbergiella epipactidis sp. nov., three novel bacterial species isolated from floral nectar. Syst Appl Microbiol 2014;37:402–411 [CrossRef][PubMed]
    [Google Scholar]
  16. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  17. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Wahington, DC: American Society for Microbiology; 1994; pp.21–41
    [Google Scholar]
  18. Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B et al. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 2001;183:2634–2645 [CrossRef][PubMed]
    [Google Scholar]
  19. Kjeldahl J. Neue Methode Zur bestimmung des stickstoffs in organischen K searches rpern. (New methods for the determinstion of nitrogen in organic substances). Zeitschrift Für Analytische Chemie 1883;22:366–383[CrossRef]
    [Google Scholar]
  20. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990;20:16
    [Google Scholar]
  21. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  22. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241[CrossRef]
    [Google Scholar]
  23. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773[PubMed][CrossRef]
    [Google Scholar]
  24. Marmur J. A procedure for isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218[CrossRef]
    [Google Scholar]
  25. Loveland-Curtze J, Miteva VI, Brenchley JE. Evaluation of a new fluorimetric DNA-DNA hybridization method. Can J Microbiol 2011;57:250–255 [CrossRef][PubMed]
    [Google Scholar]
  26. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142[PubMed][CrossRef]
    [Google Scholar]
  27. Gillis M, de Ley J, de Cleene M. The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 1970;12:143–153[PubMed][CrossRef]
    [Google Scholar]
  28. Behera P, Vaishampayan P, Singh NK, Mishra SR, Raina V et al. The draft genome sequence of Mangrovibacter sp. strain MP23, an endophyte isolated from the roots of Phragmites karka. Genom Data 2016;9:128–129 [CrossRef][PubMed]
    [Google Scholar]
  29. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;45:19126–19131[CrossRef]
    [Google Scholar]
  31. Sathyabama S, Kaur G, Arora A, Verma S, Mubin N et al. Genome sequencing, annotation and analysis of Samonella enterica sub species salmae strain DMA-1. Gut Pathog 2014;6: [CrossRef][PubMed]
    [Google Scholar]
  32. Joseph S, Desai P, Ji Y, Cummings CA, Shih R et al. Comparative analysis of genome sequences covering the seven Cronobacter species. PLoS One 2012;7:e49455 [CrossRef][PubMed]
    [Google Scholar]
  33. Gerlach Rg. Salmonella enterica subsp. diarizonae 60:r:z causing diarrhea and sepsis with fatal outcome.direct submission accession no. NZ_CP011289. 2015
  34. Rastogi G, Muppidi GL, Gurram RN, Adhikari A, Bischoff KM et al. Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, lead, South Dakota, USA. J Ind Microbiol Biotechnol 2009;36:585–598 [CrossRef][PubMed]
    [Google Scholar]
  35. Iversen C, Waddington M, On SL, Forsythe S. Identification and phylogeny of Enterobacter sakazakii relative to Enterobacter and Citrobacter species. J Clin Microbiol 2004;42:5368–5370 [CrossRef][PubMed]
    [Google Scholar]
  36. Dauga C. Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies. Int J Syst Evol Microbiol 2002;52:531–547 [CrossRef][PubMed]
    [Google Scholar]
  37. Mollet C, Drancourt M, Raoult D. rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 1997;26:1005–1011[PubMed][CrossRef]
    [Google Scholar]
  38. Poly F, Monrozier LJ, Bally R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 2001;152:95–103[PubMed][CrossRef]
    [Google Scholar]
  39. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  40. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  41. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882[PubMed][CrossRef]
    [Google Scholar]
  42. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  43. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  44. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  45. Rogers JS, Swofford DL. A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst Biol 1998;47:77–89[PubMed][CrossRef]
    [Google Scholar]
  46. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  47. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  48. DasSarma S, DasSarma P. Halophiles. In eLS Chichester: John Wiley & Sons, Ltd; 2012
    [Google Scholar]
  49. Rice WA, Paul EA. The acetylene reduction assay for measuring nitrogen fixation in waterlogged soil. Can J Microbiol 1971;17:1049–1056[PubMed][CrossRef]
    [Google Scholar]
  50. Wayne LG. International committee on systematic bacteriology: announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Zentralbl Bakteriol Mikrobiol HygA2 1988;68:433–434
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001789
Loading
/content/journal/ijsem/10.1099/ijsem.0.001789
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error