1887

Abstract

A taxonomic study using a polyphasic approach was performed on an unidentified -like Gram-stain-positive bacterium isolated from the genital tract of a rhinoceros. Comparative 16S rRNA gene sequencing showed that the bacterium belonged to the genus and was most closely related to the type strains of (98.8 % 16S rRNA gene sequence similarity), (97.8 %), (97.7 %), (97.4 %), (96.6 %), (96.4 %) and (95.4 %). DNA–DNA hybridization values between strain 647 and DSM 25104 were very low, 13.4 % (reciprocal 15.9 %). The genomic DNA G+C content of strain 647 was 58.7 mol%. The presence of the major menaquinone MK-9(H) supported the affiliation of this strain to the genus . The polar lipid profile consisted of the major components diphosphatidylglycerol, phosphatidylcholine and an unidentified phosphoglycolipid. The results of physiological and biochemical testing clearly distinguished the unknown bacterium from other species of the genus . Based on these tests, it is proposed that the unknown bacterium should be classified as a representative of a novel species of the genus named sp. nov. The type strain is 647 (=DSM 102162=LMG 29418).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001784
2017-07-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2093.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001784&mimeType=html&fmt=ahah

References

  1. Yassin AF, Hupfer H, Siering C, Schumann P. Comparative chemotaxonomic and phylogenetic studies on the genus Arcanobacterium Collins et al. 1982 emend. Lehnen et al. 2006: proposal for Trueperella gen. nov. and emended description of the genus Arcanobacterium. Int J Syst Evol Microbiol 2011;61:1265–1274 [CrossRef][PubMed]
    [Google Scholar]
  2. Collins MD, Jones D, Schofield GM. Reclassification of 'Corynebacterium haemolyticum' (MacLean, Liebow & Rosenberg) in the genus Arcanobacterium gen.nov. as Arcanobacterium haemolyticum nom.rev., comb.nov. J Gen Microbiol 1982;128:1279–1281 [CrossRef][PubMed]
    [Google Scholar]
  3. Hijazin M, Prenger-Berninghoff E, Sammra O, Alber J, Lämmler C et al. Arcanobacterium canis sp. nov., isolated from otitis externa of a dog, and emended description of the genus Arcanobacterium Collins et al. 1983 emend. Yassin et al. 2011. Int J Syst Evol Microbiol 2012;62:2201–2205 [CrossRef][PubMed]
    [Google Scholar]
  4. Hijazin M, Sammra O, Ulbegi-Mohyla H, Nagib S, Alber J et al. Arcanobacterium phocisimile sp. nov., isolated from harbour seals. Int J Syst Evol Microbiol 2013;63:2019–2024 [CrossRef][PubMed]
    [Google Scholar]
  5. Sammra O, Balbutskaya A, Ülbegi-Mohyla H, Nagib S, Lämmler C et al. Arcanobacterium pinnipediorum sp. nov., isolated from a harbour seal. Int J Syst Evol Microbiol 2015;65:4539–4543 [CrossRef][PubMed]
    [Google Scholar]
  6. Bisping W, Amtsberg G. Gram method. In Bisping W, Amtsberg G. (editors) Colour Atlas for the Diagnosis of Bacterial Pathogens in Animals Berlin and Hamburg: Paul Parey Scientific Publishers; 1988; p.336
    [Google Scholar]
  7. Hitchens AP. Advantages of culture mediums containing small percentages of agar. J Infect Dis 1921;29:390–407[CrossRef]
    [Google Scholar]
  8. Ulbegi-Mohyla H, Hassan AA, Kanbar T, Alber J, Lämmler C et al. Synergistic and antagonistic hemolytic activities of bacteria of genus Arcanobacterium and CAMP-like hemolysis of Arcanobacterium phocae and Arcanobacterium haemolyticum with Psychrobacter phenylpyruvicus. Res Vet Sci 2009;87:186–188 [CrossRef][PubMed]
    [Google Scholar]
  9. Sammra O, Balbutskaya A, Nagib S, Alber J, Lämmler C et al. Properties of an Arcanobacterium haemolyticum strain isolated from a donkey. Berl Muench Tieraerztl Wochenschr 2014;127:56–60[PubMed]
    [Google Scholar]
  10. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  11. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  12. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  13. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  14. Brosius J, Dull T, Sleeter D, Noller H. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 1978;148:107–127[CrossRef]
    [Google Scholar]
  15. Felsenstein J. PHYLIP (Phylogeny Inference Package) Version 3.6 Distributed by the author Seattle, USA: Department of Genome Sciences, University of Washington; 2005
    [Google Scholar]
  16. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  17. Jukes TH, Cantor CR. Evolution of the protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132
    [Google Scholar]
  18. Felsenstein J. Confidence limits of phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791[CrossRef]
    [Google Scholar]
  19. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  20. Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R. Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 1998;48:179–186 [CrossRef][PubMed]
    [Google Scholar]
  21. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989;8:151–156 [CrossRef]
    [Google Scholar]
  22. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773[PubMed][CrossRef]
    [Google Scholar]
  23. Glaeser SP, Falsen E, Martin K, Kämpfer P. Alicyclobacillus consociatus sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol 2013;63:3623–3627 [CrossRef][PubMed]
    [Google Scholar]
  24. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202[CrossRef]
    [Google Scholar]
  25. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  26. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996;47:39–52 [CrossRef]
    [Google Scholar]
  27. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007;57:572–576 [CrossRef][PubMed]
    [Google Scholar]
  28. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  29. Schumann P. Peptidoglycan structure. Methods Microbiol 2011;38:101–129[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001784
Loading
/content/journal/ijsem/10.1099/ijsem.0.001784
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error