1887

Abstract

A polyphasic taxonomic study was carried out on strain EBR-4-2 isolated from a biofilm reactor in Korea. Cells of the strain were Gram-stain-positive, non-spore-forming, non-motile and rod-shaped. Comparative 16S rRNA gene sequence studies showed the clear affiliation of this strain to the Actinobacteria , and it had the highest pairwise sequence similarities with Actinotalea suaedae EGI 60002 (98.7 %), Actinotalea ferrariae CF5-4 (96.3 %) and Actinotalea fermentans DSM 3133 (96.2 %). Phylogenetic analysis based on the 16S rRNA gene sequences showed that the strain formed a clear phylogenetic lineage with the genus Actinotalea . The major fatty acids were identified as C15 : 0 anteiso, C16 : 0, C16 : 0 N alcohol, C15 : 1 anteiso A and C15 : 0 iso. The major cellular polar lipids were diphosphatidylglycerol, phosphatidylinositol mannoside, phosphatidylinositol and glycolipid. The peptidoglycan type was A4β containing l-Orn–d-Glu. The whole-cell-wall sugars were glucose and ribose. The respiratory quinone was identified as menaquinone MK-10(H4), and the genomic DNA G+C content was determined to be 74.8 mol %. Based on evidence from this polyphasic study, it is proposed that strain EBR-4–2 should be designated as representing a novel species named Actinotalea caeni sp. nov. The type stain is EBR-4-2 (=KCTC 33604=JCM 30447).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001769
2017-05-25
2019-09-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1595.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001769&mimeType=html&fmt=ahah

References

  1. Yi H, Schumann P, Chun J. Demequina aestuarii gen. nov., sp. nov., a novel actinomycete of the suborder Micrococcineae, and reclassification of Cellulomonas fermentans Bagnara, et al. 1985 as Actinotalea fermentans gen. nov., comb. nov. Int J Syst Evol Microbiol 2007;57:151–156 [CrossRef][PubMed]
    [Google Scholar]
  2. Bagnara C, Toci R, Gaudin C, Belaich JP. Isolation and characterization of a cellulolytic microorganism, Cellulomonas fermentans sp. nov. Int J Syst Bacteriol 1985;35:502–507 [CrossRef]
    [Google Scholar]
  3. Parte AC. LPSN – ist of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  4. Li Y, Chen F, Dong K, Wang G. Actinotalea ferrariae sp. nov., isolated from an iron mine, and emended description of the genus Actinotalea. Int J Syst Evol Microbiol 2013;63:3398–3403 [CrossRef][PubMed]
    [Google Scholar]
  5. Zhao S, Li L, Li SH, Wang HF, Hozzein WN et al. Actinotalea suaedae sp. nov., isolated from the halophyte Suaeda physophora in Xinjiang, Northwest China. Antonie van Leeuwenhoek 2015;107:1–7 [CrossRef][PubMed]
    [Google Scholar]
  6. Jin L, Ko SR, Lee HG, Kim BH, Kim HS et al. Flaviflexus salsibiostraticola sp. nov., an actinobacterium isolated from a biofilm reactor. Int J Syst Evol Microbiol 2014;64:3293–3296 [CrossRef][PubMed]
    [Google Scholar]
  7. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982;16:772–774[PubMed]
    [Google Scholar]
  8. Jin L, Lee HG, La HJ, Ko SR, Ahn CY et al. Ferruginibacter profundus sp. nov., a novel member of the family Chitinophagaceae, isolated from freshwater sediment of a reservoir. Antonie van Leeuwenhoek 2014;106:319–323 [CrossRef][PubMed]
    [Google Scholar]
  9. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36:407–477[PubMed]
    [Google Scholar]
  10. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  11. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202[CrossRef]
    [Google Scholar]
  12. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp.115–175
    [Google Scholar]
  13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;24:4876–4882[CrossRef]
    [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotidesequences. J Mol Evol 1980;16:111–120[CrossRef]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  19. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  22. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  23. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid- deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  24. Wayne LG, Brenner DJ, Colwell RR. International committee on systematic bacteriology. report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[CrossRef]
    [Google Scholar]
  25. Shi Z, Luo G, Wang G. Cellulomonas carbonis sp. nov., isolated from coal mine soil. Int J Syst Evol Microbiol 2012;62:2004–2010 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001769
Loading
/content/journal/ijsem/10.1099/ijsem.0.001769
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error