1887

Abstract

A Gram-stain-negative, non-motile, yellow-pigmented bacterium, designated strain IMCC27201, was isolated from an artificial freshwater pond (Inkyong) in Korea. Growth of strain IMCC27201 occurred at 10–37 °C (optimum, 30 °C), at pH 7.0–8.0 (optimum, pH 7.0) and with 0–0.25 % (w/v) NaCl (optimum, 0 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain IMCC27201 belonged to the genus and was related most closely to IFO 15943 (97.8 % sequence similarity), R2A1-13 (97.2 %) and THG-SM1 (96.4 %). Strain IMCC27201 exhibited low DNA–DNA relatedness with KCTC 42885 (34.9–40.6 %). The DNA G+C content of strain IMCC27201 was 32.1 mol%. The major fatty acids were iso-C, iso-C G and iso-C 3-OH. Strain IMCC27201 contained menaquinone-6 (MK-6) as the sole isoprenoid quinone. The polar lipids of strain IMCC27201 consisted of phosphatidylethanolamine, three unidentified aminolipids and two unidentified lipids. Based on 16S rRNA gene phylogeny, phenotypic characterization and DNA–DNA relatedness, strain IMCC27201represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is IMCC27201 (=KCTC 52244=JCM 31385).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001575
2017-01-01
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/1/82.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001575&mimeType=html&fmt=ahah

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM. Bergey's Manual of Determinative Bacteriology Baltimore: Williams & Wilkins; 1923
    [Google Scholar]
  2. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 1996; 46:128–148 [CrossRef]
    [Google Scholar]
  3. Kang JY, Chun J, Jahng KY. Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 2013; 63:1633–1638 [View Article][PubMed]
    [Google Scholar]
  4. Joung Y, Kim H, Joh K. Flavobacterium jumunjinense sp. nov., isolated from a lagoon, and emended descriptions of Flavobacterium cheniae, Flavobacterium dongtanense and Flavobacterium gelidilacus. Int J Syst Evol Microbiol 2013; 63:3937–3943 [View Article][PubMed]
    [Google Scholar]
  5. Kuo I, Saw J, Kapan DD, Christensen S, Kaneshiro KY et al. Flavobacterium akiainvivens sp. nov., from decaying wood of Wikstroemia oahuensis, Hawai'i, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 2013; 63:3280–3286 [View Article][PubMed]
    [Google Scholar]
  6. Feng Q, Gao Y, Nogi Y, Tan X, Han L et al. Flavobacterium maotaiense sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2015; 65:171–176 [View Article][PubMed]
    [Google Scholar]
  7. Tamaki H, Hanada S, Kamagata Y, Nakamura K, Nomura N et al. Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int J Syst Evol Microbiol 2003; 53:519–526 [View Article][PubMed]
    [Google Scholar]
  8. Wang ZW, Liu YH, Dai X, Wang BJ, Jiang CY et al. Flavobacterium saliperosum sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 2006; 56:439–442 [View Article][PubMed]
    [Google Scholar]
  9. Fu Y, Tang X, Lai Q, Zhang C, Zhong H et al. Flavobacterium beibuense sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2011; 61:205–209 [View Article][PubMed]
    [Google Scholar]
  10. Xu M, Xin Y, Tian J, Dong K, Yu Y et al. Flavobacterium sinopsychrotolerans sp. nov., isolated from a glacier. Int J Syst Evol Microbiol 2011; 61:20–24 [View Article][PubMed]
    [Google Scholar]
  11. Jung SY, Kim YJ, Hoang VA, Jin Y, Nguyen NL et al. Flavobacterium panacisoli sp. nov., isolated from soil of a ginseng field. Arch Microbiol 2016; 198:1–7 [View Article][PubMed]
    [Google Scholar]
  12. Singh H, du J, Won K, Yang JE, Akter S et al. Flavobacterium vireti sp. nov., isolated from soil. Antonie van Leeuwenhoek 2015; 107:1421–1428 [View Article][PubMed]
    [Google Scholar]
  13. Weon HY, Song MH, Son JA, Kim BY, Kwon SW et al. Flavobacterium terrae sp. nov. and Flavobacterium cucumis sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 2007; 57:1594–1598 [View Article][PubMed]
    [Google Scholar]
  14. van Trappen S, Mergaert J, Swings J. Flavobacterium gelidilacus sp. nov., isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 2003; 53:1241–1245 [View Article][PubMed]
    [Google Scholar]
  15. van Trappen S, Vandecandelaere I, Mergaert J, Swings J. Flavobacterium fryxellicola sp. nov. and Flavobacterium psychrolimnae sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 2005; 55:769–772 [View Article][PubMed]
    [Google Scholar]
  16. Kämpfer P, Lodders N, Martin K, Avendaño-Herrera R. Flavobacterium chilense sp. nov. and Flavobacterium araucananum sp. nov., isolated from farmed salmonid fish. Int J Syst Evol Microbiol 2012; 62:1402–1408 [View Article][PubMed]
    [Google Scholar]
  17. Fujii D, Nagai F, Watanabe Y, Shirasawa Y. Flavobacterium longum sp. nov. and Flavobacterium urocaniciphilum sp. nov., isolated from a wastewater treatment plant, and emended descriptions of Flavobacterium caeni and Flavobacterium terrigena. Int J Syst Evol Microbiol 2014; 64:1488–1494 [View Article][PubMed]
    [Google Scholar]
  18. Bernardet J-F, Bowman JP. Genus I. Flavobacterium Bergey et al. 1923. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ. et al (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 4 New York: Springer; 2011 pp. 112–154
    [Google Scholar]
  19. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703[PubMed] [CrossRef]
    [Google Scholar]
  20. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  21. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376[PubMed] [CrossRef]
    [Google Scholar]
  24. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef]
    [Google Scholar]
  27. Wayne LG, Brenner DJ, Colwell RR, Grimont PA, Kandler O et al. International committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  28. Fautz E, Reichenbach H. A simple test for flexirubin‐type pigments. FEMS Microbiol Lett 1980; 8:87–91 [CrossRef]
    [Google Scholar]
  29. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4:770–773[PubMed] [CrossRef]
    [Google Scholar]
  30. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  31. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013; 63:4386–4395 [View Article][PubMed]
    [Google Scholar]
  32. Minnikin D, O'Donnell A, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  33. Collins MD, Shah HN, Minnikin DE. A note on the separation of natural mixtures of bacterial menaquinones using reverse phase thin-layer chromatography. J Appl Bacteriol 1980; 48:277–282[PubMed] [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.001575
Loading
/content/journal/ijsem/10.1099/ijsem.0.001575
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error