1887

Abstract

A Gram-stain-positive, aerobic bacterial strain, designated Y2A20, with peritrichous flagella was isolated from the top layer saline–alkaline soil, Hangjin Banner, Inner Mongolia, northern China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Y2A20 formed a stable clade with ‘ Lysinibacillus jejuensis ’ N2-5. Strain Y2A20 shared highest 16S rRNA gene sequence similarity with ‘ L. jejuensis ' N2-5 (97.4 %), but lower 16S rRNA gene sequence similarities with all other type strains (<97.0 %). The major polar lipids of strain Y2A20 were diphosphatidylglycerol, phosphatidylglycerol, phosphatidyethanolamine, two unknown aminophospholipids and three unknown phospholipids. Menaquinone-7 was the predominant menaquinone, while iso-C15 : 0, iso-C16 : 0 and iso-C17 : 0 were the major cellular fatty acids. Its genomic DNA G+C content was 39.0 mol%. DNA–DNA hybridization revealed that strain Y2A20 showed 26±5 % genomic DNA relatedness with its closest relative, ‘ L. jejuensis ’ N2-5. The results of physiological and biochemical tests allowed the discrimination of strain Y2A20 from its phylogenetic relatives. Lysinibacillus alkalisoli sp. nov. is therefore proposed with Y2A20 (=CGMCC 1.15760=KCTC 33825) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001571
2017-02-20
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/1/67.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001571&mimeType=html&fmt=ahah

References

  1. Ahmed I, Yokota A, Yamazoe A, Fujiwara T. Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int J Syst Evol Microbiol 2007;57:1117–1125 [CrossRef][PubMed]
    [Google Scholar]
  2. Cheng M, Zhang H, Zhang J, Hu G, Zhang J et al. Lysinibacillus fluoroglycofenilyticus sp. nov., a bacterium isolated from fluoroglycofen contaminated soil. Antonie van Leeuwenhoek 2015;107:157–164 [CrossRef][PubMed]
    [Google Scholar]
  3. Kong D, Wang Y, Zhao B, Li Y, Song J et al. Lysinibacillus halotolerans sp. nov., isolated from saline-alkaline soil. Int J Syst Evol Microbiol 2014;64:2593–2598 [CrossRef][PubMed]
    [Google Scholar]
  4. Liu H, Song Y, Chen F, Zheng S, Wang G. Lysinibacillus manganicus sp. nov., isolated from manganese mining soil. Int J Syst Evol Microbiol 2013;63:3568–3573 [CrossRef][PubMed]
    [Google Scholar]
  5. Miwa H, Ahmed I, Yokota A, Fujiwara T. Lysinibacillus parviboronicapiens sp. nov., a low-boron-containing bacterium isolated from soil. Int J Syst Evol Microbiol 2009;59:1427–1432 [CrossRef][PubMed]
    [Google Scholar]
  6. Yang LL, Huang Y, Liu J, Ma L, Mo MH et al. Lysinibacillus mangiferahumi sp. nov., a new bacterium producing nematicidal volatiles. Antonie van Leeuwenhoek 2012;102:53–59 [CrossRef][PubMed]
    [Google Scholar]
  7. Zhao F, Feng Y, Chen R, Zhang J, Lin X. Lysinibacillus alkaliphilus sp. nov., an extremely alkaliphilic bacterium, and emended description of genus Lysinibacillus. Int J Syst Evol Microbiol 2015;65:2426–2431 [CrossRef][PubMed]
    [Google Scholar]
  8. Azmatunnisa M, Rahul K, Lakshmi KV, Sasikala C, Ramana C. Lysinibacillus acetophenoni sp. nov., a solvent-tolerant bacterium isolated from acetophenone. Int J Syst Evol Microbiol 2015;65:1741–1748 [CrossRef][PubMed]
    [Google Scholar]
  9. Begum MA, Rahul K, Sasikala C, Ramana CV. Lysinibacillus xyleni sp. nov., isolated from a bottle of xylene. Arch Microbiol 2016;198:325–332 [CrossRef][PubMed]
    [Google Scholar]
  10. Kim SJ, Jang YH, Hamada M, Ahn JH, Weon HY et al. Lysinibacillus chungkukjangi sp. nov., isolated from Chungkukjang, Korean fermented soybean food. J Microbiol 2013;51:400–404 [CrossRef][PubMed]
    [Google Scholar]
  11. Ouoba LI, Vouidibio Mbozo AB, Thorsen L, Anyogu A, Nielsen DS et al. Lysinibacillus louembei sp. nov., a spore-forming bacterium isolated from Ntoba Mbodi, alkaline fermented leaves of cassava from the Republic of the Congo. Int J Syst Evol Microbiol 2015;65:4256–4262 [CrossRef][PubMed]
    [Google Scholar]
  12. Kämpfer P, Martin K, Glaeser SP. Lysinibacillus contaminans sp. nov., isolated from surface water. Int J Syst Evol Microbiol 2013;63:3148–3153 [CrossRef][PubMed]
    [Google Scholar]
  13. Ren Y, Chen SY, Yao HY, Deng LJ. Lysinibacillus cresolivorans sp. nov., a m-cresol-degrading bacterium isolated from coking wastewater treatment aerobic sludge. Int J Syst Evol Microbiol 2015;65:4250–4255 [CrossRef][PubMed]
    [Google Scholar]
  14. Coorevits A, Dinsdale AE, Heyrman J, Schumann P, van Landschoot A et al. Lysinibacillus macroides sp. nov., nom. rev. Int J Syst Evol Microbiol 2012;62:1121–1127 [CrossRef][PubMed]
    [Google Scholar]
  15. Kim JY, Park SH, Oh DC, Kim YJ. Lysinibacillus jejuensis sp. nov., isolated from swinery waste. J Microbiol 2014;51:872–876 [CrossRef][PubMed]
    [Google Scholar]
  16. Hayat R, Ahmed I, Paek J, Sin Y, Ehsan M et al. Lysinibacillus composti sp. nov., isolated from compost. Ann Microbiol 2014;64:1081–1088[CrossRef]
    [Google Scholar]
  17. Duan YQ, He ST, Li QQ, Wang MF, Wang WY et al. Lysinibacillus tabacifolii sp. nov., a novel endophytic bacterium isolated from Nicotiana tabacum leaves. J Microbiol 2013;51:289–294 [CrossRef][PubMed]
    [Google Scholar]
  18. Lee CS, Jung YT, Park S, Oh TK, Yoon JH. Lysinibacillus xylanilyticus sp. nov., a xylan-degrading bacterium isolated from forest humus. Int J Syst Evol Microbiol 2010;60:281–286 [CrossRef][PubMed]
    [Google Scholar]
  19. Zhu C, Sun G, Chen X, Guo J, Xu M. Lysinibacillus varians sp. nov., an endospore-forming bacterium with a filament-to-rod cell cycle. Int J Syst Evol Microbiol 2014;64:3644–3649 [CrossRef][PubMed]
    [Google Scholar]
  20. Wang YN, Chi CQ, Cai M, Lou ZY, Tang YQ et al. Amycolicicoccus subflavus gen. nov., sp. nov., an actinomycete isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 2010;60:638–643 [CrossRef][PubMed]
    [Google Scholar]
  21. Thompson JD, Gibson TJ, Plewniak F, Jeanpougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;24:4876–4882[PubMed][CrossRef]
    [Google Scholar]
  22. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376[PubMed][CrossRef]
    [Google Scholar]
  25. Rzhetsky A, Nei M. A simple method for estimating and testing Minimum-Evolution trees. Mol Biol Evol 1992;9:945–967
    [Google Scholar]
  26. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993;10:1073–1095[PubMed]
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791[CrossRef]
    [Google Scholar]
  28. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  29. Mandel M, Marmur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Method Enzymol 1968;12B:195[CrossRef]
    [Google Scholar]
  30. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142[PubMed][CrossRef]
    [Google Scholar]
  31. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  32. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reasscocitation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 1994;44:846–849[CrossRef]
    [Google Scholar]
  33. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[CrossRef]
    [Google Scholar]
  34. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  35. Kates M. Techniques of lipidology, 2nd edn. Amsterdam: Elsevier; 1986
    [Google Scholar]
  36. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[CrossRef]
    [Google Scholar]
  37. Smibert RM, Krieg NR. Phenotypic Characterization In American Society for Microbiology Washington, DC: Methods for General and Molecular Bacteriology; 1994
    [Google Scholar]
  38. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Science Press; 2001
    [Google Scholar]
  39. Kim BC, Jeong WJ, Kim DY, Oh HW, Kim H et al. Paenibacillus pueri sp. nov., isolated from Pu'er tea. Int J Syst Evol Microbiol 2009;59:1002–1006 [CrossRef][PubMed]
    [Google Scholar]
  40. Fraser SL, Jorgensen JH. Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing. Antimicrob Agents Chemother 1997;41:2738–2741[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001571
Loading
/content/journal/ijsem/10.1099/ijsem.0.001571
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error