1887

Abstract

Xenohaliotis californiensis’ (or Xc) is the aetiological agent of withering syndrome, a chronic wasting disease affecting most if not all North American species of abalone, and has been described as a -like prokaryote. Genetic data regarding this species are limited to the 16S rRNA gene. The inability to grow it axenically has hindered its genetic and genomic characterization and, in consequence, a thorough analysis of its systematics. Here, we amplified and sequenced five genes (16S rRNA, 23S rRNA, , and ) of Xc from infected abalone to analyse its phylogenetic position. Phylogenies from concatenated DNA and amino acid sequences with representative genera of most unequivocally place Xc in the family . Furthermore, the family has two reciprocally monophyletic lineages: one leading to (, Xc) and the other to ((, ), )). A molecular-clock Bayesian reconstruction places Xc as the most basal lineage in . These phylogenetic hypotheses shed light on patterns of host evolution and of ecological transitions. Specifically, and Xc inhabit aquatic hosts whereas the remaining are found in terrestrial hosts. Additionally, our evolutionary timeline places the directly transmitted marine Xc as the basal , ancestral to both freshwater and terrestrial species with adaptations leading to more complex life cycles involving intermediate vectors or reservoir species; this supports the hypothesis of a marine origin for this bacterial family.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001563
2017-01-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/1/42.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001563&mimeType=html&fmt=ahah

References

  1. Rikihisa Y. New findings on members of the family Anaplasmataceae of veterinary importance. Ann N Y Acad Sci 2006;1078:438–445 [CrossRef][PubMed]
    [Google Scholar]
  2. Weinert LA, Werren JH, Aebi A. Evolution and diversity of rickettsia bacteria. BMC Biol 2009;7:6 [CrossRef][PubMed]
    [Google Scholar]
  3. Rar V, Golovljova I. Anaplasma, Ehrlichia, and "Candidatus Neoehrlichia" bacteria: pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infect Genet Evol 2011;11:1842–1861 [CrossRef][PubMed]
    [Google Scholar]
  4. Darby AC, Cho NH, Fuxelius HH, Westberg J, Andersson SG. Intracellular pathogens go extreme: genome evolution in the Rickettsiales. Trends Genet 2007;23:511–520 [CrossRef][PubMed]
    [Google Scholar]
  5. Kang YJ, Diao XN, Zhao GY, Chen MH, Xiong Y et al. Extensive diversity of Rickettsiales bacteria in two species of ticks from China and the evolution of the Rickettsiales. BMC Evol Biol 2014;14:167 [CrossRef][PubMed]
    [Google Scholar]
  6. Ferla MP, Thrash JC, Giovannoni SJ, Patrick WM. New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability. PLoS One 2013;8:1–14 [CrossRef][PubMed]
    [Google Scholar]
  7. Dumler JS, Barbet AF, Bekker CP, Dasch GA, Palmer GH et al. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and 'HGE agent' as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 2001;51:2145–2165 [CrossRef][PubMed]
    [Google Scholar]
  8. Montagna M, Sassera D, Epis S, Bazzocchi C, Vannini C et al. "Candidatus Midichloriaceae" fam. nov. (Rickettsiales), an ecologically widespread clade of intracellular Alphaproteobacteria. Appl Environ Microbiol 2013;79:3241–3248 [CrossRef][PubMed]
    [Google Scholar]
  9. Hess S, Suthaus A, Melkonian M.Candidatus Finniella’ (Rickettsiales, Alphaproteobacteria), novel endosymbionts of Viridiraptorid amoeboflagellates (Cercozoa, Rhizaria). Appl Environ Microbiol 2016;82:659–670 [CrossRef][PubMed]
    [Google Scholar]
  10. Merhej V, Raoult D. Rickettsial evolution in the light of comparative genomics. Biol Rev Camb Philos Soc 2011;86:379–405 [CrossRef][PubMed]
    [Google Scholar]
  11. Friedman CS, Andree KB, Beauchamp KA, Moore JD, Robbins TT et al. 'Candidatus Xenohaliotis californiensis', a newly described pathogen of abalone, Haliotis spp., along the west coast of North America. Int J Syst Evol Microbiol 2000;50:847–855 [CrossRef][PubMed]
    [Google Scholar]
  12. Moore JD, Finley CA, Friedman CS, Robbins TT. Withering syndrome and restoration of southern California abalone populations. Calif Coop Ocean Fish Investig Reports 2002;43:112–117
    [Google Scholar]
  13. Friedman CS. Infection with Xenohaliotis californiensis. Man Diagnostic Tests Aquat Anim 2012;511–523
    [Google Scholar]
  14. Cruz-Flores R, Cáceres-Martínez J, Vásquez-Yeomans R. A novel method for separation of Rickettsiales-like organism "Candidatus Xenohaliotis californiensis" from host abalone tissue. J Microbiol Methods 2015;115:79–82 [CrossRef][PubMed]
    [Google Scholar]
  15. Garrity GM, Bell JA, Lilburn TG, Lansing E. Taxonomic outline of the prokaryotes. Bergey’s Man Syst Bacteriol 2004;2:1–399
    [Google Scholar]
  16. Lee KB, Liu CT, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005;55:1907–1919 [CrossRef][PubMed]
    [Google Scholar]
  17. Vannini C, Petroni G, Verni F, Rosati G. A bacterium belonging to the Rickettsiaceae family inhabits the cytoplasm of the marine ciliate Diophrys appendiculata (Ciliophora, Hypotrichia). Microb Ecol 2005;49:434–442 [CrossRef][PubMed]
    [Google Scholar]
  18. Martijn J, Schulz F, Zaremba-Niedzwiedzka K, Viklund J, Stepanauskas R et al. Single-cell genomics of a rare environmental alphaproteobacterium provides unique insights into Rickettsiaceae evolution. ISME J 2015;9:2373–2385 [CrossRef][PubMed]
    [Google Scholar]
  19. Andree K, Friedman CS, Moore JD, Hedrick RP. A polymerase chain reaction assay for the detection of genomic DNA of a Rickettsiales-like prokaryote associated with withering syndrome in California abalone. J Shellfish Res 2000;19:213–218
    [Google Scholar]
  20. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012;28:1647–1649 [CrossRef][PubMed]
    [Google Scholar]
  21. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  22. Casiraghi M, Bordenstein SR, Baldo L, Lo N, Beninati T et al. Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology 2005;151:4015–4022 [CrossRef][PubMed]
    [Google Scholar]
  23. Baldo L, Dunning Hotopp JC, Jolley KA, Bordenstein SR, Biber SA et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 2006;72:7098–7110 [CrossRef][PubMed]
    [Google Scholar]
  24. Min CK, Yang JS, Kim S, Choi MS, Kim IS et al. Genome-based construction of the metabolic pathways of Orientia tsutsugamushi and comparative analysis within the Rickettsiales order. Comp Funct Genomics 2008;2008:623145[CrossRef]
    [Google Scholar]
  25. Gillespie JJ, Brayton KA, Williams KP, Quevedo Diaz MA, Brown WC et al. Phylogenomics reveals a diverse Rickettsiales type IV secretion system. Infect Immun 2010;78:1809–1823 [CrossRef][PubMed]
    [Google Scholar]
  26. Bailey TL, Williams N, Misleh C, Li WW. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 2006;34:369–373 [CrossRef][PubMed]
    [Google Scholar]
  27. Antonio DB, Andree KB, Moore JD, Friedman CS, Hedrick RP. Detection of Rickettsiales-like prokaryotes by in situ hybridization in black abalone, Haliotis cracherodii, with withering syndrome. J Invertebr Pathol 2000;75:180–182 [CrossRef][PubMed]
    [Google Scholar]
  28. Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 2005;21:2104–2105 [CrossRef][PubMed]
    [Google Scholar]
  29. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012;9:772 [CrossRef][PubMed]
    [Google Scholar]
  30. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  31. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001;17:754–755[PubMed][CrossRef]
    [Google Scholar]
  32. Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 1999;16:1114–1116[CrossRef]
    [Google Scholar]
  33. Swofford DL. paup*: Phylogenetic Analysis Using Parsimony (* and other methods). Version 4 Sunderland, MA: Sinauer Associates; 2002
    [Google Scholar]
  34. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012;29:1969–1973 [CrossRef][PubMed]
    [Google Scholar]
  35. Moran NA, Munson MA, Baumann P, Ishikawa H. A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc B Biol Sci 1993;253:167–171[CrossRef]
    [Google Scholar]
  36. Speel EJ, Hopman AH, Komminoth P. Amplification methods to increase the sensitivity of in situ hybridization: play card(s). J Histochem Cytochem 1999;47:281–288[PubMed][CrossRef]
    [Google Scholar]
  37. El-Sharoud W. editor Bacterial Physiology: A Molecular Approach Berlin: Springer press; 2008; pp293–312[CrossRef]
    [Google Scholar]
  38. Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M et al. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol 2011;9:e1000602 [CrossRef][PubMed]
    [Google Scholar]
  39. Mossel E, Steel M. How much can evolved characters tell us about the tree that generated them?. In: Gascuel O. editor Mathematics of Evolution & Phylogeny Oxford University Press; 2005; pp.384–412
    [Google Scholar]
  40. Schreiber F, Pick K, Erpenbeck D, Wörheide G, Morgenstern B. OrthoSelect: a protocol for selecting orthologous groups in phylogenomics. BMC Bioinformatics 2009;10:219 [CrossRef][PubMed]
    [Google Scholar]
  41. Luo H, Csuros M, Hughes AL, Moran MA. Evolution of divergent life history strategies in marine Alphaproteobacteria. MBio 2013;4:e00373-1300373-18 [CrossRef][PubMed]
    [Google Scholar]
  42. Fuxelius HH, Darby A, Min CK, Cho NH, Andersson SGE. The genomic and metabolic diversity of Rickettsia. Res Microbiol 2007;158:745–753 [CrossRef][PubMed]
    [Google Scholar]
  43. Moore JD, Robbins TT, Hedrick RP, Friedman CS. Transmission of the Rickettsiales-like prokaryote ‘Candidatus Xenohaliotis californiensis’ and its role in withering syndrome of California abalone, Haliotis spp. J Shellfish Res 2001;20:867–874
    [Google Scholar]
  44. Headley SA, Scorpio DG, Vidotto O, Stephen Dumler J. Neorickettsia helminthoeca and salmon poisoning disease: a review. Vet J 2011;187:165–173 [CrossRef][PubMed]
    [Google Scholar]
  45. Crosson LM, Wight N, Vanblaricom GR, Kiryu I, Moore JD et al. Abalone withering syndrome: distribution, impacts, current diagnostic methods and new findings. Dis Aquat Organ 2014;108:261–270 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001563
Loading
/content/journal/ijsem/10.1099/ijsem.0.001563
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error