1887

Abstract

A Gram-staining-negative, aerobic, non-motile, rod-shaped bacterial strain, designated CAU 1062, was isolated from marine sand in Jeju island, Republic of Korea and its taxonomic position was investigated using a polyphasic approach. CAU 1062 grew optimally at 30 °C and pH 8 in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that CAU 1062 formed a distinct lineage within the genus Tropicimonas and was the most closely related to Tropicimonas sediminicola M97 (similarity 96.11 %). The strain had ubiquinone-10 (Q-10) as the predominant respiratory quinone and C18 : 1ω7c as the major cellular fatty acid. The polar lipid pattern of CAU 1062 consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, an aminolipid, six phospholipids and five lipids. The DNA G+C content was 65.7 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, CAU 1062 represents a novel species of the genus Tropicimonas , for which the name Tropicimonas arenosa sp. nov. is proposed. The type strain is CAU 1062 (=KCTC 52178=NBRC 111995).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001549
2016-12-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5514.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001549&mimeType=html&fmt=ahah

References

  1. Bowman J. P..( 2000;). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. . Int J Syst Evol Microbiol 50: 1861–1868. [CrossRef] [PubMed]
    [Google Scholar]
  2. Cappuccino J. G., Sherman N..( 2002;). Microbiology: A Laboratory Manual, , 6th edn.. Menlo Park, CA:: Benjamin/Cummings;.
    [Google Scholar]
  3. Cho S. L., Nam S. W., Yoon J. H., Lee J. S., Sukhoom A., Kim W..( 2008;). Lactococcus chungangensis sp. nov., a lactic acid bacterium isolated from activated sludge foam. . Int J Syst Evol Microbiol 58: 1844–1849. [CrossRef] [PubMed]
    [Google Scholar]
  4. Felsenstein J..( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef]
    [Google Scholar]
  5. Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  6. Felsenstein J..( 1989;). phylip – phylogeny inference package (version3.2). . Cladistics 5: 164–166.
    [Google Scholar]
  7. Fitch W. M..( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20: 406–416. [CrossRef]
    [Google Scholar]
  8. Fitch W. M., Margoliash E..( 1967;). Construction of phylogenetic trees. . Science 155: 279–284. [CrossRef] [PubMed]
    [Google Scholar]
  9. Gordon R. E., Mihm J. M..( 1962;). Identification of Nocardia caviae (Erikson) nov. comb. . Ann N Y Acad Sci 98: 628–636. [CrossRef]
    [Google Scholar]
  10. Harwati T. U., Kasai Y., Kodama Y., Susilaningsih D., Watanabe K..( 2009;). Tropicimonas isoalkanivorans gen. nov., sp. nov., a branched-alkane-degrading bacterium isolated from Semarang Port in Indonesia. . Int J Syst Evol Microbiol 59: 388–391. [CrossRef] [PubMed]
    [Google Scholar]
  11. Jukes T. H., Cantor C. R..( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. H.. New York:: Academic Press;.[CrossRef]
    [Google Scholar]
  12. Kim J. H., Yoon J. H., Kim W..( 2016;). Salinimicrobium soli sp. nov., isolated from soil of reclaimed land. . Int J Syst Evol Microbiol 66: 462–467. [CrossRef] [PubMed]
    [Google Scholar]
  13. Komagata K., Suzuki K..( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19: 161–208.[CrossRef]
    [Google Scholar]
  14. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al.( 2007;). clustal w and clustal x version 2.0. . Bioinformatics 23: 2947–2948. [CrossRef]
    [Google Scholar]
  15. Minnikin D. E., Hutchinson I. G., Caldicott A. B., Goodfellow M..( 1980;). Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. . J Chromatogr 188: 221–233. [CrossRef]
    [Google Scholar]
  16. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H..( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2: 233–241. [CrossRef]
    [Google Scholar]
  17. Nicholson W. L., Setlow P..( 1990;). Sporulation, germination and outgrowth. . In Molecular Biological Methods for Bacillus, pp. 391–450. Edited by Harwood C. R., Cutting S. M.. Chichester:: Wiley;.
    [Google Scholar]
  18. Oh K. H., Choi W. C., Jung Y. T., Kang S. J., Oh T. K., Yoon J. H..( 2012;). Tropicimonas aquimaris sp. nov., isolated from seawater, and emended description of the genus Tropicimonas Harwati et al. 2009. . Int J Syst Evol Microbiol 62: 688–692. [CrossRef] [PubMed]
    [Google Scholar]
  19. Parte A. C..( 2014;). LPSN – list of prokaryotic names with standing in nomenclature. . Nucleic Acids Res 42: D613–D616. [CrossRef] [PubMed]
    [Google Scholar]
  20. Rodriquez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A..( 1981;). Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. . Microb Ecol 7: 235–243. [CrossRef] [PubMed]
    [Google Scholar]
  21. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  22. Shin N. R., Roh S. W., Kim M. S., Yun B., Whon T. W., Kim Y. O., Bae J. W..( 2012;). Tropicimonas sediminicola sp. nov., isolated from marine sediment. . Int J Syst Evol Microbiol 62: 2424–2429. [CrossRef] [PubMed]
    [Google Scholar]
  23. Smibert R. M., Krieg N. R..( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  24. Tamaoka J., Komagata K..( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25: 125–128. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001549
Loading
/content/journal/ijsem/10.1099/ijsem.0.001549
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error