1887

Abstract

A novel member of Acidobacteria was isolated from a microbial mat growing on a geothermally heated dead tree trunk in Hawai’i Volcanoes National Park (HI, USA). The rod-shaped, Gram-negative capsulated cells of strain PMMR2 were non-motile and catalase and oxidase negative. Growth occurred aerobically from 15 to 55 °C (optimum, 40 °C) and at pH values from 4.5 to 7.0 (optimum, 6.5). A limited range of sugars and organic acids supported growth. However, results of a genomic analysis suggested that various polysaccharides might be hydrolysed as carbon sources, and evidence for pectin degradation was observed in liquid cultures. A genomic analysis also revealed genes for a Group 1f uptake hydrogenase; assays with liquid cultures confirmed hydrogen consumption, including uptake at sub-atmospheric concentrations. Nitrate was not dissimilated to nitrite. Major membrane fatty acids included iso-C15 : 0 and iso-C17 : 0. The G+C content was 57.2mol%. A comparative genome analysis revealed an average nucleotide identity of 72.2 % between PMMR2 and its nearest cultured phylogenetic neighbour, Acidobacterium capsulatum ATCC 51196 (=JCM 7670); analysis of the 16S rRNA gene revealed a 96.8 % sequence identity with Acidobacterium capsulatum ATCC 51196. These results and other phenotypic differences indicated that strain PMMR2 represents a novel species in the genus Acidobacterium , for which the name Acidobacterium ailaaui sp. nov. is proposed. The type strain, PMMR2 (=DSM 27394=LMG 28340), is the second formal addition to the genus Acidobacterium .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001516
2016-12-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5328.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001516&mimeType=html&fmt=ahah

References

  1. Barns S. M., Cain E. C., Sommerville L., Kuske C. R..( 2007;). Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. . Appl Environ Microbiol73:3113–3116. [CrossRef][PubMed]
    [Google Scholar]
  2. Chan O. C., Yang X., Fu Y., Feng Z., Sha L., Casper P., Zou X..( 2006;). 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in South-West China. . FEMS Microbiol Ecol58:247–259. [CrossRef][PubMed]
    [Google Scholar]
  3. Chin C.-S., Alexander D. H., Marks P., Klammer A. A., Drake J., Heiner C., Clum A., Copeland A., Huddleston J. et al.( 2013;). Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. . Nat Methods10:563–569. [CrossRef][PubMed]
    [Google Scholar]
  4. Coates J. D., Ellis D. J., Gaw C. V., Lovley D. R..( 1999;). Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. . Int J Syst Bacteriol49:1615–1622. [CrossRef][PubMed]
    [Google Scholar]
  5. Constant P., Chowdhury S. P., Hesse L., Pratscher J., Conrad R..( 2011;). Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H(2)-oxidizing bacteria. . Appl Environ Microbiol77:6027–6035. [CrossRef][PubMed]
    [Google Scholar]
  6. Crowe M. A., Power J. F., Morgan X. C., Dunfield P. F., Lagutin K., Rijpstra W. I., Rijpstra I. C., Vyssotski G. N., Sinninghe Damste J. S. et al.( 2014;). Pyrinomonas methylaliphatogenes gen. nov., sp. nov., a novel group 4 thermophilic member of the phylum Acidobacteria from geothermal soils. . Int J Syst Evol Microbiol64:220–227. [CrossRef][PubMed]
    [Google Scholar]
  7. Davis K. E., Sangwan P., Janssen P. H..( 2011;). Acidobacteria, Rubrobacteridae and Chloroflexi are abundant among very slow-growing and mini-colony-forming soil bacteria. . Environ Microbiol13:798–805. [CrossRef][PubMed]
    [Google Scholar]
  8. Dedysh S. N., Kulichevskaya I. S., Serkebaeva Y. M., Mityaeva M. A., Sorokin V. V., Suzina N. E., Rijpstra W. I., Damsté J. S..( 2012;). Bryocella elongata gen. nov., sp. nov., a member of subdivision 1 of the Acidobacteria isolated from a methanotrophic enrichment culture, and emended description of Edaphobacter aggregans Koch et al. 2008. . Int J Syst Evol Microbiol62:654–664. [CrossRef][PubMed]
    [Google Scholar]
  9. Dunbar J., Takala S., Barns S. M., Davis J., Kuske C. R..( 1999;). Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. . Appl Environ Microbiol65:1662–1669.[PubMed]
    [Google Scholar]
  10. Eichorst S. A., Breznak J. A., Schmidt T. M..( 2007;). Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. . Appl Environ Microbiol73:2708–2717. [CrossRef][PubMed]
    [Google Scholar]
  11. Foesel B. U., Rohde M., Overmann J..( 2013;). Blastocatella fastidiosa gen. nov., sp. nov., isolated from semiarid savanna soil - the first described species of Acidobacteria subdivision 4. . Syst Appl Microbiol36:82–89. [CrossRef][PubMed]
    [Google Scholar]
  12. Foesel B. U., Nägele V., Naether A., Wüst P. K., Weinert J., Bonkowski M., Lohaus G., Polle A., Alt F. et al.( 2014;). Determinants of Acidobacteria activity inferred from the relative abundances of 16S rRNA transcripts in German grassland and forest soils. . Environ Microbiol16:658–675. [CrossRef][PubMed]
    [Google Scholar]
  13. Fukunaga Y., Kurahashi M., Yanagi K., Yokota A., Harayama S..( 2008;). Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum ‘Acidobacteria’. . Int J Syst Evol Microbiol58:2597–2601. [CrossRef][PubMed]
    [Google Scholar]
  14. Greening C., Carere C. R., Rushton-Green R., Harold L. K., Hards K., Taylor M. C., Morales S. E., Stott M. B., Cook G. M..( 2015a;). Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. . Proc Natl Acad Sci U S A112:10497–10502. [CrossRef][PubMed]
    [Google Scholar]
  15. Greening C., Constant P., Hards K., Morales S. E., Oakeshott J. G., Russell R. J., Taylor M. C., Berney M., Conrad R., Cook G. M..( 2015b;). Atmospheric hydrogen scavenging: from enzymes to ecosystems. . Appl Environ Microbiol81:1190–1199. [CrossRef][PubMed]
    [Google Scholar]
  16. Greening C., Biswas A., Carere C. R., Jackson C. J., Taylor M. C., Stott M. B., Cook G. M., Morales S. E..( 2016;). Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. . ISME J10:761–777. [CrossRef][PubMed]
    [Google Scholar]
  17. Huber K. J., Wüst P. K., Rohde M., Overmann J., Foesel B. U..( 2014;). Aridibacter famidurans gen. nov., sp. nov. and Aridibacter kavangonensis sp. nov., two novel members of subdivision 4 of the Acidobacteria isolated from semiarid savannah soil. . Int J Syst Evol Microbiol64:1866–1875. [CrossRef][PubMed]
    [Google Scholar]
  18. Hyatt D., Chen G. L., Locascio P. F., Land M. L., Larimer F. W., Hauser L. J..( 2010;). Prodigal: prokaryotic gene recognition and translation initiation site identification. . BMC Bioinformatics11:119. [CrossRef][PubMed]
    [Google Scholar]
  19. Izumi H., Nunoura T., Miyazaki M., Mino S., Toki T., Takai K., Sako Y., Sawabe T., Nakagawa S..( 2012;). Thermotomaculum hydrothermale gen. nov., sp. nov., a novel heterotrophic thermophile within the phylum Acidobacteria from a deep-sea hydrothermal vent chimney in the Southern Okinawa Trough. . Extremophiles16:245–253. [CrossRef][PubMed]
    [Google Scholar]
  20. Janssen P. H..( 2006;). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. . Appl Environ Microbiol72:1719–1728. [CrossRef][PubMed]
    [Google Scholar]
  21. Jones R. T., Robeson M. S., Lauber C. L., Hamady M., Knight R., Fierer N..( 2009;). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. . ISME J3:442–453. [CrossRef][PubMed]
    [Google Scholar]
  22. Kielak A., Pijl A. S., van Veen J. A., Kowalchuk G. A..( 2009;). Phylogenetic diversity of Acidobacteria in a former agricultural soil. . ISME J3:378–382. [CrossRef][PubMed]
    [Google Scholar]
  23. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol62:716–721. [CrossRef][PubMed]
    [Google Scholar]
  24. King C. E., King G. M..( 2014a;). Description of Thermogemmatispora carboxidivorans sp. nov., a carbon-monoxide-oxidizing member of the class Ktedonobacteria isolated from a geothermally heated biofilm, and analysis of carbon monoxide oxidation by members of the class Ktedonobacteria. . Int J Syst Evol Microbiol64:1244–1251. [CrossRef][PubMed]
    [Google Scholar]
  25. King C. E., King G. M..( 2014b;). Thermomicrobium carboxidum sp. nov., and Thermorudis peleae gen. nov., sp. nov., carbon monoxide-oxidizing bacteria isolated from geothermally heated biofilms. . Int J Syst Evol Microbiol64:2586–2592. [CrossRef][PubMed]
    [Google Scholar]
  26. Kishimoto N., Kosako Y., Tano T..( 1991;). Acidobacterium capsulatum gen. nov., sp. nov. an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. . Curr Microbiol22:1–7. [CrossRef]
    [Google Scholar]
  27. Koch I. H., Gich F., Dunfield P. F., Overmann J..( 2008;). Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. . Int J Syst Evol Microbiol58:1114–1122. [CrossRef][PubMed]
    [Google Scholar]
  28. Konstantinidis K. T., Tiedje J. M..( 2005;). Genomic insights that advance the species definition for prokaryotes. . Proc Natl Acad Sci U S A102:2567–2572. [CrossRef][PubMed]
    [Google Scholar]
  29. Kulichevskaya I. S., Suzina N. E., Liesack W., Dedysh S. N..( 2010;). Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Acidobacteria. . Int J Syst Evol Microbiol60:301–306. [CrossRef][PubMed]
    [Google Scholar]
  30. Kulichevskaya I. S., Kostina L. A., Valásková V., Rijpstra W. I., Damsté J. S., de Boer W., Dedysh S. N..( 2012;). Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood. . Int J Syst Evol Microbiol62:1512–1520. [CrossRef][PubMed]
    [Google Scholar]
  31. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E..( 1988;). Fatty Acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol38:358–361. [CrossRef]
    [Google Scholar]
  32. Lane D. J..( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. Chichester:: Wiley;.
    [Google Scholar]
  33. Lee S. H., Cho J. C..( 2009;). Distribution patterns of the members of phylum Acidobacteria in global soil samples. . J Microbiol Biotechnol19:1281–1287. [CrossRef][PubMed]
    [Google Scholar]
  34. Lladó S., Benada O., Cajthaml T., Baldrian P., García-Fraile P..( 2016;). Silvibacterium bohemicum gen. nov. sp. nov., an acidobacterium isolated from coniferous soil in the Bohemian Forest National Park. . Syst Appl Microbiol39:14–19. [CrossRef][PubMed]
    [Google Scholar]
  35. Losey N. A., Stevenson B. S., Busse H. J., Sinninghe Damsté J. S., Rijpstra W. I., Rudd S., Lawson P. A..( 2013;). Thermoanaerobaculum aquaticum gen. nov., sp. nov., the first cultivated member of Acidobacteria subdivision 23, isolated from a hot spring. . Int J Syst Evol Microbiol63:4149–4157. [CrossRef][PubMed]
    [Google Scholar]
  36. Männistö M. K., Rawat S., Starovoytov V., Häggblom M. M..( 2012;). Granulicella arctica sp. nov., Granulicella mallensis sp. nov., Granulicella tundricola sp. nov. and Granulicella sapmiensis sp. nov., novel acidobacteria from tundra soil. . Int J Syst Evol Microbiol62:2097–2106. [CrossRef][PubMed]
    [Google Scholar]
  37. Meisinger D. B., Zimmermann J., Ludwig W., Schleifer K. H., Wanner G., Schmid M., Bennett P. C., Engel A. S., Lee N. M..( 2007;). In situ detection of novel Acidobacteria in microbial mats from a chemolithoautotrophically based cave ecosystem (Lower Kane Cave, WY, USA). . Environ Microbiol9:1523–1534. [CrossRef][PubMed]
    [Google Scholar]
  38. Mesbah M., Premachandran U., Whutman W. B..( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance Liquid chromatography. . Int J Syst Bacteriol39:159–167. [CrossRef]
    [Google Scholar]
  39. Meyer O., Schlegel H. G..( 1978;). Reisolation of the carbon monoxide utilizing hydrogen bacterium Pseudomonas carboxydovorans (Kistner) comb. nov. . Arch Microbiol118:35–43. [CrossRef][PubMed]
    [Google Scholar]
  40. Miller L. T..( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxyl acids. . J Clin Microbiol16:584–586.[PubMed]
    [Google Scholar]
  41. Okamura K., Kawai A., Yamada T., Hiraishi A..( 2011;). Acidipila rosea gen. nov., sp. nov., an acidophilic chemoorganotrophic bacterium belonging to the phylum Acidobacteria. . FEMS Microbiol Lett317:138–142. [CrossRef][PubMed]
    [Google Scholar]
  42. Pankratov T. A., Dedysh S. N..( 2010;). Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. . Int J Syst Evol Microbiol60:2951–2959. [CrossRef][PubMed]
    [Google Scholar]
  43. Pankratov T. A., Kirsanova L. A., Kaparullina E. N., Kevbrin V. V., Dedysh S. N..( 2012;). Telmatobacter bradus gen. nov., sp. nov., a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria, and emended description of Acidobacterium capsulatum Kishimoto et al. 1991. . Int J Syst Evol Microbiol62:430–437. [CrossRef][PubMed]
    [Google Scholar]
  44. Piché-Choquette S., Tremblay J., Tringe S. G., Constant P..( 2016;). H2-saturation of high affinity H2-oxidizing bacteria alters the ecological niche of soil microorganisms unevenly among taxonomic groups. . PeerJ4:e1782. [CrossRef]
    [Google Scholar]
  45. Pruesse E., Peplies J., Glöckner F. O..( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics28:1823–1829. [CrossRef][PubMed]
    [Google Scholar]
  46. Rawat S. R., Männistö M. K., Bromberg Y., Häggblom M. M..( 2012;). Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils. . FEMS Microbiol Ecol82:341–355. [CrossRef][PubMed]
    [Google Scholar]
  47. Smith C. W..( 1981;). Bryophytes and lichens of the puhimau geothermal area, Hawaii Volcanoes National Park. . Bryologist84:457–466. [CrossRef]
    [Google Scholar]
  48. Tamaoka J., Komagata K..( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett25:125–128. [CrossRef]
    [Google Scholar]
  49. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol30:2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  50. Tank M., Bryant D. A..( 2015;). Nutrient requirements and growth physiology of the photoheterotrophic Acidobacterium, Chloracidobacterium thermophilum. . Front Microbiol6:226. [CrossRef][PubMed]
    [Google Scholar]
  51. Yarza P., Yilmaz P., Pruesse E., Glöckner F. O., Ludwig W., Schleifer K. H., Whitman W. B., Euzéby J., Amann R. et al.( 2014;). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. . Nat Rev Microbiol12:635–645. [CrossRef][PubMed]
    [Google Scholar]
  52. Zeng Y., Zou Y., Chen B., Grebmeier J. M., Li H., Yu Y., Zheng T..( 2011;). Phylogenetic diversity of sediment bacteria in the northern Bering Sea. . Polar Biology34:907–919. [CrossRef]
    [Google Scholar]
  53. Zimmermann J., Gonzalez J. M., Saiz-Jimenez C., Ludwig W..( 2005;). Detection and phylogenetic relationships of highly diverse uncultured acidobacterial communities in Altamira Cave Using 23S rRNA sequence analyses. . Geomicrobiol22:379–388. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001516
Loading
/content/journal/ijsem/10.1099/ijsem.0.001516
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error