1887

Abstract

Before the establishment of pure cultures, the species , ‘’ and ‘’ were proposed to encompass all causal agents of the nitrogen-fixing root nodules of dicotyledonous plants from the genera , or . The sole species with a validly published name, the type species , was described by as present in the root of alder. Until now no type strain has been designated for , even though the absence of a type strain has seriously inhibited the application of modern taxonomic methods to the genus . Thus, we propose that strain ACN14a, isolated in pure culture from ssp. with morphological properties matching the original description of , be recognized as the type strain of this species according to Rule 18f of the International Code of Nomenclature of Bacteria. We compared ACN14a to two strains, CcI3 and BMG5.12, isolated from and , respectively, based on chemotaxonomy, phenotype microarray data and molecular data retrieved from genome sequences. All three tested strains grew as branched hyphae, produced vesicles and multilocular sporangia containing non-motile spores and metabolized short fatty acids, TCA-cycle intermediates and carbohydrates. Chemotaxonomically, the three strains were indistinguishable with respect to phospholipids (phosphatidylinositol, diphosphatidylglycerol, glycophospholipids and phosphatidylglycerol) and cell-sugar composition (glucose, mannose, ribose, rhamnose, galactose and xylose, with the latter two being diagnostic for the genus). The major fatty acids identified in all three strains were iso-C, C 8, C, C and C. ACN14a and BMG5.12 also shared C 6, while C 9 was found to be unique to BMG5.12. The major menaquinones identified in all three novel type strains were MK-9(H), MK-9(H) and MK-9(H). MK-9(H) was shared by ACN14a and BMG5.12, while MK-10(H) and MK-8(H) were only found in BMG5.12. Analysis of 16S rRNA gene sequences showed 98.1–98.9 % identity between strains ACN14a, CcI3 and BMG5.12. Digital DNA–DNA hybridization values between the three type strains were well below 70 %. These results confirm the separation of the strains into three distinct species, , sp. nov. and sp. nov. Thus, we propose ACN14a (=DSM 45986=CECT 9034), CcI3 (=DSM 45818=CECT 9043) and BMG5.12 (=DSM 46783=CECT 9031) as the respective type strains.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001496
2016-12-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5201.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001496&mimeType=html&fmt=ahah

References

  1. Akimov V. N., Dobritsa S. V.. 1992; Grouping of Frankia strains on the basis of DNA relatedness. Syst Appl Microbiol15:372–379 [CrossRef]
    [Google Scholar]
  2. Akimov V. N., Dobritsa S. V., Stupar O. S.. 1991; Grouping of Frankia strains by DNA:DNA homology: How many genospecies are in the genus Frankia? Nitrogen fixation. In Developments in Plant and Soil Sciences pp.635–636 Edited by Polsinelli M., Materassi R., Vincenzini M.. Dordrecht, The Netherlands: Kluwer Academic Publisher;
    [Google Scholar]
  3. An C. S., Wills J. W., Riggsby W. S., Mullin B. C.. 1983; Deoxyribonucleic acid base composition of 12 Frankia isolates. Can J Bot61:2859–2862[CrossRef]
    [Google Scholar]
  4. An C. S., Riggsby W. S., Mullin B. C.. 1985; Restriction pattern analysis of genomic DNA of Frankia isolates. Plant Soil87:43–48[CrossRef]
    [Google Scholar]
  5. Baker D. D.. 1987; Relationships among pure cultured strains of Frankia based on host specificity. Physiol Plant70:245–248 [CrossRef]
    [Google Scholar]
  6. Bautista G. H. H., Cruzb H. A., Nesme X., Valdés M., Mendoza H. A., Fernandez M. P.. 2011; Genomospecies identification and phylogenomic relevance of AFLP analysis of isolated and non-isolated strains of Frankia spp. Syst Appl Microbiol34:200–206 [CrossRef][PubMed]
    [Google Scholar]
  7. Becking J. H.. 1970; Frankiaceae fam. nov. (Actinomycetales) with one new combination and six new species of the genus Frankia Brunchorst 1886, 174. Int J Syst Bacteriol20:201–220 [CrossRef]
    [Google Scholar]
  8. Benson D. R., Silvester W. B.. 1993; Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev57:293–319
    [Google Scholar]
  9. Benson D. R., Clawson M. L.. 2000; Evolution of the actinorhizal plant symbioses. A model system for analysis of biological process. In Prokaryotic Nitrogen Fixation pp.207–224 Edited by Triplett E. W.. Wymondham, UK: Horizon Scientific Press;
    [Google Scholar]
  10. Benson D. R., Brooks J. M., Huang Y., Bickhart D. M., Mastronunzio J. E.. 2011; The biology of Frankia sp. strains in the post-genome era. Mol Plant Microbe Interact24:1310–1316 [CrossRef][PubMed]
    [Google Scholar]
  11. Bloom R. A., Lechevalier M. P., Tate R. L. III. 1989; Physiological, chemical, morphological, and plant infectivity characteristics of Frankia isolates from Myrica pennsylvanica: Correlation to DNA restriction patterns. Appl Environ Microbiol55:2161–2166[PubMed]
    [Google Scholar]
  12. Brunchorst J.. 1886; Über einige Wurzelanschwellungen, besonders diejenigen von Alnus und den Elaeagnaceen. Unters Bot Inst Tübingen2:151–177
    [Google Scholar]
  13. Clawson M. L., Bourret A., Benson D. R.. 2004; Assessing the phylogeny of Frankia-actinorhizal plant nitrogen-fixing root nodule symbioses with Frankia 16S rRNA and glutamine synthetase gene sequences. Mol Phylogenet Evol31:131–138 [CrossRef][PubMed]
    [Google Scholar]
  14. Collins M. D.. 1985; Analysis of isoprenoid quinone. Method Microbiol18:329–366[CrossRef]
    [Google Scholar]
  15. Collins M. D., Shah H. N.. 1984; Fatty acid, menaquinone and polar lipid composition of Rothia dentocariosa. Arch Microbiol137:247–249 [CrossRef]
    [Google Scholar]
  16. Edgar R. C.. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32:1792–1797 [CrossRef]
    [Google Scholar]
  17. Fernandez M. P., Meugnier H., Grimont P. A. D., Bardin R.. 1989; Deoxyribonucleic acid relatedness among members of the genus Frankia. Int J Syst Bacteriol39:424–429 [CrossRef]
    [Google Scholar]
  18. Ganesh G., Misra A. K., Chapelon C., Normand P.. 1994; Morphological and molecular characterization of Frankia sp. isolates from nodules of Alnus nepalensis don. Arch Microbiol161:152–155
    [Google Scholar]
  19. Ghodhbane-Gtari F., Nouioui I., Chair M., Boudabous A., Gtari M.. 2010; 16S–23S rRNA intergenic spacer region variability in the genus Frankia. Microb Ecol60:487–495 [CrossRef][PubMed]
    [Google Scholar]
  20. Goloboff P. A., Farris J. S., Nixon K. C.. 2008; TNT, a free program for phylogenetic analysis. Cladistics24:774–786 [CrossRef]
    [Google Scholar]
  21. Gtari M., Brusetti L., Skander G., Mora D., Boudabous A., Daffonchio D.. 2004; Isolation of Elaeagnus-compatible Frankia from soils collected in Tunisia. FEMS Microbiol Lett234:349–355 [CrossRef][PubMed]
    [Google Scholar]
  22. Gtari M., Brusetti L., Hassen A., Mora D., Daffonchio D., Boudabous A.. 2007; Genetic diversity among Elaeagnus compatible Frankia strains and sympatric-related nitrogen-fixing actinobacteria revealed by nifH sequence analysis. Soil Biol Biochem39:372–377 [CrossRef]
    [Google Scholar]
  23. Gtari M., Tisa L. S., Normand P.. 2013; Diversity of Frankia strains, actinobacterial symbionts of actinorhizal plants. In Symbiotic Endophytes pp.123–148 Springer Berlin Heidelberg;[CrossRef]
    [Google Scholar]
  24. Hahn D., Mirza B., Benagli C., Vogel G., Tonolla M.. 2011; Typing of nitrogen-fixing Frankia strains by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. Syst Appl Microbiol34:63–68 [CrossRef][PubMed]
    [Google Scholar]
  25. Jeong S. C., Ritchie N. J., Myrold D. D.. 1999; Molecular phylogenies of plants and Frankia support multiple origins of actinorhizal symbioses. Mol Phylogenet Evol13:493–503 [CrossRef][PubMed]
    [Google Scholar]
  26. Kroppenstedt R. M.. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr5:2359–2367 [CrossRef]
    [Google Scholar]
  27. Kroppenstedt R. M., Goodfellow M.. 2006; The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillispora and Thermomonospora. Archaea, Bacteria, Firmicutes, Actinomycetes. In The Prokaryotes: A Handbook on the Biology of Bacteria pp.682–724 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E.. New York, NY, USA: Springer;
    [Google Scholar]
  28. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E.. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol38:358–361 [CrossRef]
    [Google Scholar]
  29. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A.. 1992; International Code of Nomenclature of Bacteria (1990 Revision). Bacteriological Code Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Lechevalier M. P.. 1994; Taxonomy of the genus Frankia (Actinomycetales). Int J Syst Bacteriol44:1–8 [CrossRef]
    [Google Scholar]
  31. Lechevalier M. P., Lechevalier H. A.. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol20:435–443 [CrossRef]
    [Google Scholar]
  32. Lechevalier M. P., Lechevalier H. A.. 1979; The taxonomic position of the actinomycetic endophytes. In Symbiotic Nitrogen Fixation in the Management of Temperate Forests pp.111–121 Edited by Gordon J. C., Wheeler C. T., Perry D. A.. Forest Research Laboratory, Corvallis, OR: Oregon State University;
    [Google Scholar]
  33. Lechevalier M. P., Ruan J. S.. 1984; Physiology and chemical diversity of Frankia spp. isolated from nodules of Comptonia peregrina (L.) Coult and Ceanothus americanus L. Plant Soil78:15–22 [CrossRef]
    [Google Scholar]
  34. Lechevalier M. P., Lechevalier H. A.. 1990; Systematics, isolation and culture of Frankia. In The Biology of Frankia and Actinorhizal Plants pp.35–60 Edited by Schwintzer C. R., Tjepkema J. D.. San Diego: Academic Press;[CrossRef]
    [Google Scholar]
  35. Lechevalier M. P., Horriere F., Lechevalier H. A.. 1982; The biology of Frankia and related organisms. Dev Ind Microbiol23:51–60
    [Google Scholar]
  36. Lechevalier M. P., Baker D., Horrière F.. 1983; Physiology, chemistry, serology, and infectivity of two Frankia isolates from Alnus incana subsp. rugosa. Can J Bot61:2826–2833 [CrossRef]
    [Google Scholar]
  37. Lefort V., Desper R., Gascuel O.. 2015; FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol32:2798–2800 [CrossRef][PubMed]
    [Google Scholar]
  38. Lumini E., Bosco M.. 1996; PCR-restriction fragment length polymorphism identification and host range of single-spore isolates of the flexible Frankia sp. strain UFI 132715. Appl Environ Microbiol62:3026–3029
    [Google Scholar]
  39. Magallon S., Crane P. R., Herendeen P. S.. 1999; Phylogenetic pattern, diversity, and diversification of eudicots. Ann Mo Bot Gard86:297–372 [CrossRef]
    [Google Scholar]
  40. Meier-Kolthoff J. P., Göker M., Spröer C., Klenk H.-P.. 2013a; When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol195:413–418 [CrossRef]
    [Google Scholar]
  41. Meier-Kolthoff J. P., Auch A. F., Klenk H.-P., Göker M.. 2013b; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14:60 [CrossRef]
    [Google Scholar]
  42. Meier-Kolthoff J. P., Hahnke R. L., Petersen J., Scheuner C., Michael V., Fiebig A., Rohde C., Rohde M., Fartmann B. et al. 2014a; Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci9:2 [CrossRef][PubMed]
    [Google Scholar]
  43. Meier-Kolthoff J. P., Auch A. F., Klenk H.-P., Göker M.. 2014b; Highly parallelized inference of large genome-based phylogenies. Concurr Comput Pr Exper26:1715–1729 [CrossRef]
    [Google Scholar]
  44. Meier-Kolthoff J. P., Klenk H. P., Göker M.. 2014c; Taxonomic use of DNA G+C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol64:352–356 [CrossRef][PubMed]
    [Google Scholar]
  45. Miller L. T.. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol16:584–586
    [Google Scholar]
  46. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  47. Mizra B., Welsh A., Rieder J. P., Paschke M. W., Hahn D.. 2009; Diversity of frankiae in soils from five continents. Syst Appl Microbiol32:558–570[CrossRef]
    [Google Scholar]
  48. Murry M. A., Fontaine M. S., Torrey J. G.. 1984; Growth kinetics and nitrogenase induction in Frankia sp. HFPArI 3 grown in batch culture. Plant Soil78:61–78 [CrossRef]
    [Google Scholar]
  49. Murry M. A., Zhang D., Schneider M., Bruijn D. F. J.. 1995; Use of repetitive sequences and the polymerase chain reaction to fingerprint the genomes of Frankia isolates. Symbiosis19:223–240
    [Google Scholar]
  50. Newcomb W., Callaham D., Torrey J. G., Peterson R. L.. 1979; Morphogenesis and fine structure of the actinomycetous endophyte of nitrogen-fixing root nodules of Comptonia peregrina. Bot Gaz140:S22–S34 [CrossRef]
    [Google Scholar]
  51. Normand P., Lalonde M.. 1982; Evaluation of Frankia strains isolated from provenances of two Alnus species. Can J Microbiol28:1133–1142 [CrossRef]
    [Google Scholar]
  52. Normand P., Benson D. R.. 2012; Order XVI Frankiales. In Bergey’s Manual of Systematic Bacteriology pp.508–510 Edited by Goodfellow M., Kämpfer P., Busse H. J., Trujillo M. E., Ludwig W., Suzuki K. I., Whitman W. B.. New York: Springer;
    [Google Scholar]
  53. Normand P., Orso S., Cournoyer B., Jeannin P., Chapelon C., Dawson J., Evtushenko L., Misra A. K.. 1996; Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol46:1–9 [CrossRef]
    [Google Scholar]
  54. Normand P., Lapierre P., Tisa L. S., Gogarten J. P., Alloisio N., Bagnarol E., Bassi C. A., Berry A. M., Bickhart D. M. et al. 2007; Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res17:7–15 [CrossRef]
    [Google Scholar]
  55. Nouioui I., Ghodhbane-Gtari F., Beauchemin N. J., Tisa L. S., Gtari M.. 2011; Phylogeny of members of the Frankia genus based on gyrB, nifH and glnII sequences. Antonie van Leeuwenhoek100:579–587 [CrossRef]
    [Google Scholar]
  56. Nouioui I., Beauchemin N., Cantor M. N., Chen A., Detter J. C., Furnholm T., Ghodhbane-Gtari F., Goodwin L., Gtari M. et al. 2013; Draft genome sequence of Frankia sp. strain BMG5.12, a nitrogen actinobacterium isolated from Tunisian soils. Genome Announc1:e00468-13 [CrossRef][PubMed]
    [Google Scholar]
  57. Parker C. T., Tindall B. J., Garrity G. M.. 2015; International code of nomenclature of prokaryotes. Prokaryotic code (2008 revision). Int J Syst Evol Micorbiol (in Press)
    [Google Scholar]
  58. Pattengale N. D., Alipour M., Bininda-Emonds O. R. P., Moret B. M. E., Stamatakis A.. 2010; How many bootstrap replicates are necessary?. J Comput Biol17:337–354 [CrossRef][PubMed]
    [Google Scholar]
  59. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical note 101. DE: MIDI;
    [Google Scholar]
  60. Schleifer K. H., Kandler O.. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev36:407–477
    [Google Scholar]
  61. Sen A., Daubin V., Abrouk D., Gifford I., Berry A. M., Normand P.. 2014; Phylogeny of the class actinobacteria revisited in the light of complete genomes. The orders Frankiales and Micrococcales should be split into coherent entities: Proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov. Int J Syst Evol Microbiol64:3821–3832 [CrossRef][PubMed]
    [Google Scholar]
  62. Skerman V. B. D., McGowan V., Sneath P. H. A.. 1980; Approved lists of bacterial names. Int J Syst Evol Microbiol30:225–420 [CrossRef]
    [Google Scholar]
  63. Simon L., Jabaji-Hare S., Bousquet J., Lalonde M.. 1989; Confirmation of Frankia species using cellular fatty acids analysis. Syst Appl Microbiol11:229–235 [CrossRef]
    [Google Scholar]
  64. Simonet P., Normand P., Hirsch A. M., Akkermans A. D. L.. 1990; The genetics of the Frankia actinorhizal symbiosis. In The Molecular Biology of Symbiotic Nitrogen Fixation pp.70–109 Edited by Gresshoff P. M.. Boca Raton: CRC Press;
    [Google Scholar]
  65. Skipski V. P., Peterson R. F., Barclay M.. 1964; Quantitative analysis of phospholipids by thin-layer chromatography. Biochem J90:374–378 [CrossRef][PubMed]
    [Google Scholar]
  66. Stahl E., Kaltenbach U.. 1961; Dünnschicht-Chromatographie. VI. Mitteilung spurenanalyse von zuckergemischen auf kieselgur G-Schichten. J Chromatogr5:351–355[CrossRef]
    [Google Scholar]
  67. Stamatakis A.. 2014; RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics30:1312–1313 [CrossRef]
    [Google Scholar]
  68. Staneck J. L., Roberts G. D.. 1974; Simplified approach to identification of aerobic actinomycetes by thin layer chromatography. J Appl Microbiol28:226–231
    [Google Scholar]
  69. Swofford D. L. 2002; PAUP*: Phylogenetic analysis using parsimony (*and Other Methods), Version 4.0 b10. Sinauer Associates, Sunderland
  70. Tindall B. J.. 1990; A comparative study of the lipid composition of Halobacteriumsaccharovorum from various sources. Syst Appl Microbiol13:128–130 [CrossRef]
    [Google Scholar]
  71. Torrey J. G., Tjepkema J. D.. 1979; Symbiotic nitrogen fixation in actinomycete nodulated plants. Bot Gaz140:i–ii [CrossRef]
    [Google Scholar]
  72. Vaas L. A. I., Sikorski J., Hofner B., Fiebig A., Buddruhs N., Klenk H.-P., Göker M.. 2013; Opm: an R package for analysing OmniLog(R) phenotype microarray data. Bioinformatics29:1823–1824 [CrossRef][PubMed]
    [Google Scholar]
  73. Von Tubeuf K.. 1895; Pflanzenkrankheiten durch Kryptogame Parasiten verursacht pp.1–599 Berlin: Verlag J Springer;
    [Google Scholar]
  74. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  75. Wolters D. J., Van Dijk C., Zoetendal E. G., Akkermans A. D. L.. 1997; Phylogenetic characterization of ineffective Frankia in Alnus glutinosa (L.) Gaertn. Nodules from wetland soil inoculants. Mol Ecol6:971–981 [CrossRef]
    [Google Scholar]
  76. Woronin M. S.. 1866; Über die bei der Schwarzerle (Alnus glutinosa) und bei der gewöhnlichen Garten-Lupine (Lupinus mutabilis) auftretenden Wurzelanschwellungen. Mem Acad Imp Sci St Petersbourg VII Series10:1–13
    [Google Scholar]
  77. Zhang X., Benson D. R.. 1992; Utilization of amino acids by Frankia sp. strain CpI1. Arch Microbiol158:256–261 [CrossRef]
    [Google Scholar]
  78. Zhang Z., Lopez M. F., Torrey J. G.. 1984; A comparison of cultural characteristics and infectivity of Frankia isolates from root nodules of Casuarina species. Plant Soil78:79–90 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001496
Loading
/content/journal/ijsem/10.1099/ijsem.0.001496
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error