1887

Abstract

A Gram-stain-positive, non-motile, rod-shaped bacterium (strain JC303) isolated from a salt pan was identified based on 16S rRNA gene sequence analysis as a member of the genus Jeotgalibacillus . It was related most closely to Jeotgalibacillus salarius ASL-1 (99.1 % similarity), J eotgalibacillus alimentarius YKJ-13 (97.9 %), J eotgalibacillus soli JSM 081008 (97.9 %), J eotgalibacillus malaysiensis D5 (97.8 %), J eotgalibacillus marinus DSM 1297 (96.3 %), J eotgalibacillus campisalis SF-57 (96.1 %) and J. soli P9 (94.9 %). Genomic relatedness based on DNA–DNA hybridization of strain JC303 with the type strains of the closest related species was less than 40 %. Diphosphatidylglycerol, three aminophospholipids, an unidentified aminoglycolipid, two unidentified phospholipids and an unidentified lipid were the polar lipids of strain JC303. Major (>10 %) fatty acids were anteiso-C15 : 0, iso-C15 : 0 and iso-C14 : 0. Cell-wall amino acids contained peptidoglycan with l-lysine as the diagnostic diamino acid. Strain JC303 contained MK-7 as the predominant (96 %) menaquinone with the presence of a significant amount (4 %) of MK-8. The DNA G+C content was 43 mol%. On the basis of morphological, physiological, genotypic, phylogenetic and chemotaxonomic analyses, strain JC303 is considered to represent a novel species of the genus Jeotgalibacillus , for which the name Jeotgalibacillus alkaliphilus sp. nov. is proposed. The type strain is JC303 (=KCTC 33662=LMG 28756). In addition, we propose to rename J. soli (Chen et al., 2010), an illegitimate homonym of the validly published name Jeotgalibacillus soli (Cunha et al., 2012) as Jeotgalibacillus terrae sp. nov. with type strain JSM 081008 (=DSM 22174=KCTC 13528).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001491
2016-12-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5167.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001491&mimeType=html&fmt=ahah

References

  1. Biebl H., Pfennig N..( 1981;). Isolation of members of the family Rhodospirillaceae. . In The Prokaryotes: A Handbook on Habitats, Isolation, and Identification of Bacteria,vol. 1 pp. 267–273. Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G.. New York:: Springer;.
    [Google Scholar]
  2. Cappuccino J. G., Sherman N..( 1998;). Microbiology – A Laboratory Manual, , 5th edn, Part, V., pp. 135–183. California:: Benjamin/Cummings Science Publishing;.
    [Google Scholar]
  3. Chen Y.-G., Peng D.-J., Chen Q.-H., Zhang Y.-Q., Tang S.-K., Zhang D.-C., Peng Q.-Z., Li W.-J..( 2010;). Jeotgalibacillus soli sp. nov., isolated from non-saline forest soil, and emended description of the genus Jeotgalibacillus. . Antonie van Leeuwenhoek 98: 415–421. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cunha S., Tiago I., Paiva G., Nobre F., da Costa M. S., Veríssimo A..( 2012;). Jeotgalibacillus soli sp. nov., a Gram-stain-positive bacterium isolated from soil. . Int J Syst Evol Microbiol 62: 608–612. [CrossRef] [PubMed]
    [Google Scholar]
  5. Divyasree B., Lakshmi K. V. N. S., Bharti D., Sasikala Ch., Ramana Ch. V..( 2016;). Rhodovulum aestuarii sp. nov., isolated from a brackish water body. . Int J Syst Evol Microbiol 66: 165–171. [CrossRef] [PubMed]
    [Google Scholar]
  6. Kates M..( 1972;). Techniques of Lipidology. New York:: Elsevier;.[CrossRef]
    [Google Scholar]
  7. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  8. Kimura M..( 1980;). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  9. Lakshmi K. V. N. S., Sasikala Ch., Takaichi S., Ramana Ch. V..( 2011;). Phaeospirillum oryzae sp. nov., a spheroplast-forming, phototrophic alphaproteobacterium from a paddy soil. . Int J Syst Evol Microbiol 61: 1656–1661. [CrossRef] [PubMed]
    [Google Scholar]
  10. Marmur J..( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3: 208–218. [CrossRef]
    [Google Scholar]
  11. Mesbah M., Premachandran U., Whitman W. B..( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167. [CrossRef]
    [Google Scholar]
  12. Oren A., Duker S., Ritter S..( 1996;). The polar lipid composition of Walsby's square bacterium. . FEMS Microbiol Lett 138: 135–140. [CrossRef]
    [Google Scholar]
  13. Parker C. T., Tindall B. J., Garrity G. M..( 2016;). International Code of Nomenclature of Prokaryotes. Prokaryotic Code (2008 Revision). . Int J Syst Evol Microbiol, (in press). [CrossRef]
    [Google Scholar]
  14. Rüger H.-J..( 1983;). Differentiation of Bacillus globisporus, Bacillus marinus comb. nov., Bacillus aminovorans, and Bacillus insolitus. . Int J Syst Bacteriol 33: 157–161. [CrossRef]
    [Google Scholar]
  15. Rüger H.-J., Richter G..( 1979;). Bacillus globisporus subsp. marinus subsp. nov. . Int J Syst Bacteriol 29: 196–203. [CrossRef]
    [Google Scholar]
  16. Sasser M..( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, , MIDI Technical Note 101.. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  17. Schleifer K. H..( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18: 123–156.[CrossRef]
    [Google Scholar]
  18. Schleifer K. H., Kandler O..( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36: 407–477.[PubMed]
    [Google Scholar]
  19. Smibert R. M., Krieg N. R..( 1981;). General characterization. . In Manual of Methods for General Microbiology, pp. 409–443. Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  20. Smibert R. M., Krieg N. R..( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  21. Soto C. Y., Cama M., Gibert I., Luquin M..( 2000;). Application of an easy and reliable method for sulfolipid-I detection in the study of its distribution in Mycobacterium tuberculosis strains. . FEMS Microbiol Lett 187: 103–107. [CrossRef] [PubMed]
    [Google Scholar]
  22. Stackebrandt E., Goebel B. M..( 1994;). A place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44: 846–849. [CrossRef]
    [Google Scholar]
  23. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis (mega) version 6. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  24. Tang S.-K., Wang Y., Lou K., Mao P.-H., Xu L.-H., Jiang C.-L., Kim C.-J., Li W.-J..( 2009;). Kocuria halotolerans sp. nov., an actinobacterium isolated from a saline soil in China. . Int J Syst Evol Microbiol 59: 1316–1320. [CrossRef] [PubMed]
    [Google Scholar]
  25. Tourova T. P., Antonov A. S..( 1987;). Identification of microorganisms by rapid DNA–DNA hybridization. . Methods Microbiol 19: 333–355.[CrossRef]
    [Google Scholar]
  26. Tushar L., Sasikala Ch., Ramana Ch. V..( 2014;). Draft genome sequence of Rhodomicrobium udaipurense JA643T with special reference to hopanoid biosynthesis. . DNA Res 21: 639–647. [CrossRef] [PubMed]
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al.( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37: 463–464. [CrossRef]
    [Google Scholar]
  28. Xie C., Yokota A..( 2003;). Phylogenetic analysis of Lampropedia hyalina based on the 16S rRNA gene sequence. . J Gen Appl Microbiol 49: 345–349. [CrossRef] [PubMed]
    [Google Scholar]
  29. Yaakop A. S., Chan K.-G., Ee R., Kahar U. M., Kon W. C., Goh K. M..( 2015;). Isolation of Jeotgalibacillus malaysiensis sp. nov. from a sandy beach, and emended description of the genus Jeotgalibacillus. . Int J Syst Evol Microbiol 65: 2215–2221. [CrossRef] [PubMed]
    [Google Scholar]
  30. Yoon J.-H., Weiss N., Lee K.-C., Lee I.-S., Kang K. H., Park Y.-H..( 2001;). Jeotgalibacillus alimentarius gen. nov., sp. nov., a novel bacterium isolated from jeotgal with L-lysine in the cell wall, and reclassification of Bacillus marinus Rüger as Mrinibacillus marinus gen nov., comb. nov. . Int J Syst Evol Microbiol 51: 2087–2093. [CrossRef] [PubMed]
    [Google Scholar]
  31. Yoon J.-H., Kim I.-G., Schumann P., Oh T.-K., Park Y.-H..( 2004;). Marinibacillus campisalis sp. nov., a moderate halophile isolated from a marine solar saltern in Korea, with emended description of the genus Marinibacillus. . Int J Syst Evol Microbiol 54: 1317–1321. [CrossRef] [PubMed]
    [Google Scholar]
  32. Yoon J.-H., Kang S.-J., Schumann P., Oh T.-K..( 2010;). Jeotgalibacillus salarius sp. nov., isolated from a marine saltern, and reclassification of Marinibacillus marinus and Marinibacillus campisalis as Jeotgalibacillus marinus comb. nov. and Jeotgalibacillus campisalis comb. nov., respectively. . Int J Syst Evol Microbiol 60: 15–20. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001491
Loading
/content/journal/ijsem/10.1099/ijsem.0.001491
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Supplementary File 2

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error