1887

Abstract

A novel bacterial strain, designated KBP-13, was isolated from a water sample taken from the Banping Lake Wetland Park in Taiwan and characterized using a polyphasic taxonomic approach. Cells of strain KBP-13 were Gram-stain-negative, aerobic, poly-β-hydroxybutyrate-accumulating, motile rods that formed light yellow colonies. Growth occurred at 15–40 °C (optimum, 30–40 °C), at pH 6.0–8.0 (optimum, pH 6.0) and with 0–2 % (w/v) NaCl (optimum, 0 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain KBP-13 belonged to the genus Uliginosibacterium within the family Rhodocyclaceae of the class Betaproteobacteria and its most closely related neighbour was Uliginosibacterium gangwonense 5YN10-9 with sequence similarity of 96.0 %. Strain KBP-13 contained summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and C14 : 0 as predominant fatty acids. The major respiratory quinone was Q-8. The DNA G+C content of the genomic DNA was 65.1 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one uncharacterized aminophospholipid, one uncharacterized aminolipid, two uncharacterized phospholipids and three uncharacterized glycolipids. On the basis of the genotypic, chemotaxonomic and phenotypic data, strain KBP-13 represents a novel species in the genus Uliginosibacterium , for which the name Uliginosibacterium paludis sp. nov. is proposed. The type strain is KBP-13 (=BCRC 80903=LMG 28837=KCTC 42655).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001481
2016-12-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5118.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001481&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kudo Y., Oyaizu H..( 1997;). The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. . Int J Syst Bacteriol 47: 249–251. [CrossRef] [PubMed]
    [Google Scholar]
  2. Beveridge T. J., Lawrence J. R., Murray R. G. E..( 2007;). Sampling and staining for light microscopy. . In Methods for General and Molecular Bacteriology, , 3rd edn., pp. 19–33. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  3. Bowman J. P..( 2000;). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. . Int J Syst Evol Microbiol 50: 1861–1868. [CrossRef] [PubMed]
    [Google Scholar]
  4. Breznak J. A., Costilow R. N..( 2007;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, , 3rd edn., pp. 309–329. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  5. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P..( 2001;). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. . Int J Syst Evol Microbiol 51: 1729–1735. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T. et al.( 2009;). The Ribosomal database project: improved alignments and new tools for rRNA analysis. . Nucleic Acids Res 37: D141–D145. Database issue. [CrossRef] [PubMed]
    [Google Scholar]
  7. Collins M. D..( 1994;). Isoprenoid quinones. . In Chemical Methods in Prokaryotic Systematics, pp. 265–309. Edited by Goodfellow M., O’Donnell A. G.. Chichester:: Wiley;.
    [Google Scholar]
  8. Embley T. M., Wait R..( 1994;). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M., O’Donnell A. G.. Chichester:: Wiley;.
    [Google Scholar]
  9. Felsenstein J..( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  10. Felsenstein J..( 1993;). PHYLIP (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  11. Hall T. A..( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kimura M..( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;.[CrossRef]
    [Google Scholar]
  14. Kluge A. G., Farris J. S..( 1969;). Quantitative phyletics and the evolution of anurans. . Syst Zool 18: 1–32. [CrossRef]
    [Google Scholar]
  15. Kumar S., Stecher G., Tamura K..( 2016;). mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. . Mol Biol Evol 33: 1870–1874. [CrossRef] [PubMed]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B..( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by High-Performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167. [CrossRef]
    [Google Scholar]
  17. Nokhal T. H., Schlegel H. G..( 1983;). Taxonomic study of Paracoccus denitrificans. . Int J Syst Bacteriol 33: 26–37. [CrossRef]
    [Google Scholar]
  18. Powers E. M..( 1995;). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. . Appl Environ Microbiol 61: 3756–3758.[PubMed]
    [Google Scholar]
  19. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  20. Sasser M..( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  21. Schlegel H. G., Lafferty R., Krauss I..( 1970;). The isolation of mutants not accumulating poly-beta-hydroxybutyric acid. . Arch Mikrobiol 71: 283–294. [CrossRef] [PubMed]
    [Google Scholar]
  22. Spiekermann P., Rehm B. H., Kalscheuer R., Baumeister D., Steinbüchel A..( 1999;). A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. . Arch Microbiol 171: 73–80. [CrossRef] [PubMed]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G..( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25: 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  24. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R..( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Bacteriology, , 3rd edn., pp. 330–393. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  25. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J..( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173: 697–703. [CrossRef] [PubMed]
    [Google Scholar]
  26. Wen C. M., Tseng C. S., Cheng C. Y., Li Y. K..( 2002;). Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. . Biotechnol Appl Biochem 35: 213–219. [CrossRef] [PubMed]
    [Google Scholar]
  27. Weon H. Y., Kim B. Y., Yoo S. H., Kwon S. W., Go S. J., Stackebrandt E..( 2008;). Uliginosibacterium gangwonense gen. nov., sp. nov., isolated from a wetland, Yongneup, in Korea. . Int J Syst Evol Microbiol 58: 131–135. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001481
Loading
/content/journal/ijsem/10.1099/ijsem.0.001481
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error