1887

Abstract

A thermophilic, anaerobic, heterotrophic bacterium, designated 2PyrY55-1, was isolated from the wall of an active hydrothermal white-smoker chimney in the Soria Moria vent field (71° N) at the Mohns Ridge in the Norwegian–Greenland Sea. Cells of the strain were Gram-negative, motile rods that possessed a polar flagellum and a sheath-like outer structure (‘toga’). Growth was observed at 45–70 °C (optimum 65 °C), at pH 5.0–7.5 (optimum pH 5.5) and in 1.5–5.5 % (w/v) NaCl (optimum 2.5 %). The strain grew on pyruvate, complex proteinaceous substrates and various sugars. Cystine and elemental sulfur were used as electron acceptors, and sulfide was then produced. The G+C content of the genomic DNA was 27 mol% ( method). Cellular fatty acids included C, C, C 7 and/or iso-C 2-OH, C 9, C 9, C, C 7 and C. Phylogenetic analyses of the 16S rRNA gene showed that the strain belonged to the genus in the family . Based on the phylogenetic and chemotaxonomic data, strain 2PyrY55-1 (=DSM 29778=JCM 30566) is the type strain of a novel species of the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001472
2016-12-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5070.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001472&mimeType=html&fmt=ahah

References

  1. Alain K., Marteinsson V. T., Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Prieur D., Birrien J. L.. 2002; Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol52:1331–1339 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J. H., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  3. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S.. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev43:260–296[PubMed]
    [Google Scholar]
  4. Benson D. A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D. J., Ostell J., Sayers E. W.. 2013; GenBank. Nucleic Acids Res41:D36–D42 [CrossRef][PubMed]
    [Google Scholar]
  5. Bhandari V., Gupta R. S.. 2014a; Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations. Antonie van Leeuwenhoek105:143–168[CrossRef]
    [Google Scholar]
  6. Bhandari V., Gupta R. S.. 2014b; The phylum Thermotogae. In The Prokaryotes – Other Major Lineages of Bacteria and the Archaea, 4th., edn. pp.989–1015 Edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F.. Berlin Heidelberg: Springer Verlag;
    [Google Scholar]
  7. Cord-Ruwisch R.. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods4:33–36 [CrossRef]
    [Google Scholar]
  8. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  9. Itoh T., Onishi M., Kudo T., Takashina T., Kato S., Sakamoto M., Ohkuma M., Iino T.. 2016; Athalassotoga saccharophila gen. nov., sp. nov., isolated from an acidic terrestrial hot spring, and proposal of Mesoaciditogales ord. nov. and Mesoaciditogaceae fam. nov. in the phylum Thermotogae. Int J Syst Evol Microbiol66:1045–1051 [CrossRef]
    [Google Scholar]
  10. Jackson C. R., Langner H. W., Donahoe-Christiansen J., Inskeep W. P., McDermott T. R.. 2001; Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ Microbiol3:532–542 [CrossRef][PubMed]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  12. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar B. A., Lai T., Steppi S. et al. 2004; ARB: a software environment for sequence data. Nucleic Acids Res32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  13. Mandel M., Igambi L., Bergendahl J., Dodson M. L., Scheltgen E.. 1970; Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J Bacteriol101:333–338[PubMed]
    [Google Scholar]
  14. Marmur J.. 1963; A procedure for the isolation of deoxyribonucleic acid from microorganisms. In Methods in Enzymology pp.726–728 Edited by Colowick S. P., Kaplan N. O.. New York: Academic Press;
    [Google Scholar]
  15. Myers E. W., Miller W.. 1988; Optimal alignments in linear space. Comput Appl Biosci4:11–17 [CrossRef][PubMed]
    [Google Scholar]
  16. Nunoura T., Oida H., Miyazaki M., Suzuki Y., Takai K., Horikoshi K.. 2007; Marinitoga okinawensis sp. nov., a novel thermophilic and anaerobic heterotroph isolated from a deep-sea hydrothermal field, Southern Okinawa Trough. Int J Syst Evol Microbiol57:467–471 [CrossRef][PubMed]
    [Google Scholar]
  17. Oren A., Garrity G. M.. 2014; List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol64:1455–1458 [CrossRef]
    [Google Scholar]
  18. Pedersen R. B., Thorseth I. H., Nygaard T. E., Lilley M., Kelley D.. 2010; Hydrothermal activity at the Arctic Mid-Ocean Ridge. In Diversity of Hydrothermal Systems on Slow-Spreading Ocean Ridges, Geophysical Monographvol. 188 pp.67–89 Edited by Rona P., Devey C., Dyment J., Murton B.. Washington, DC: American Geophysical Union;[CrossRef]
    [Google Scholar]
  19. Postec A., Le Breton C., Fardeau M. L., Lesongeur F., Pignet P., Querellou J., Ollivier B., Godfroy A.. 2005; Marinitoga hydrogenitolerans sp. nov., a novel member of the order Thermotogales isolated from a black smoker chimney on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol55:1271–1221 [CrossRef][PubMed]
    [Google Scholar]
  20. Postec A., Ciobanu M., Birrien J. L., Bienvenu N., Prieur D., Le Romancer M.. 2010; Marinitoga litoralis sp. nov., a thermophilic, heterotrophic bacterium isolated from a coastal thermal spring on Ile Saint-Paul, Southern Indian Ocean. Int J Syst Evol Microbiol60:1778–1782 [CrossRef][PubMed]
    [Google Scholar]
  21. Pruesse E., Peplies J., Glöckner F. O.. 2012; SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  22. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F. O.. 2013; The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res41:D590–D596 [CrossRef][PubMed]
    [Google Scholar]
  23. Ryu E.. 1938; On the gram-differentiation of bacteria by the simplest method. J Jpn Soc Vet Sci17:31 [CrossRef]
    [Google Scholar]
  24. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  25. Schleifer K. H.. 2009; Classification of Bacteria and Archaea: past, present and future. Syst Appl Microbiol32:533–542 [CrossRef][PubMed]
    [Google Scholar]
  26. Steinsbu B. O., Thorseth I. H., Nakagawa S., Inagaki F., Lever M. A., Engelen B., Øvreås L., Pedersen R. B.. 2010; Archaeoglobus sulfaticallidus sp. nov., a thermophilic and facultatively lithoautotrophic sulfate-reducer isolated from black rust exposed to hot ridge flank crustal fluids. Int J Syst Evol Microbiol60:2745–2752 [CrossRef][PubMed]
    [Google Scholar]
  27. Steinsbu B. O., Tindall B. J., Torsvik V. L., Thorseth I. H., Daae F. L., Pedersen R. B.. 2011; Rhabdothermus arcticus gen. nov., sp. nov., a member of the family Thermaceae isolated from a hydrothermal vent chimney in the soria moria vent field on the Arctic Mid-Ocean Ridge. Int J Syst Evol Microbiol61:2197–2204 [CrossRef][PubMed]
    [Google Scholar]
  28. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  29. Wery N., Lesongeur F., Pignet P., Derennes V., Cambon-Bonavita M. A., Godfroy A., Barbier G.. 2001; Marinitoga camini gen. nov., sp. nov., a rod-shaped bacterium belonging to the order Thermotogales, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol51:495–504 [CrossRef][PubMed]
    [Google Scholar]
  30. Widdel F., Bak F.. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, 2nd edn. pp.3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H.. New York: Springer;[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001472
Loading
/content/journal/ijsem/10.1099/ijsem.0.001472
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error