1887

Abstract

A bacterium designated as strain roo10 was isolated from roots of Jerusalem artichoke (). Cells were Gram-stain-negative and non-motile rods. The phylogenetic analysis of the 16S rRNA gene indicated that it represented a member of the genus , and its close relatives included JA40 (97.8 % 16S rRNA gene sequence similarity), 5GH38-5 (97.7 %) and TR6-08 (97.1 %). Growth of roo10 occurred at pH 7–9. The temperature for growth ranged from 20 to 37 °C. Tolerance to NaCl was observed from 0.005 to 5 % (w/v) concentration. Predominant fatty acids were iso-C (23.5 %), iso-C (18.9 %) and anteiso-C (11.5 %). Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidyl--methylethanolamine were the major polar lipids. The predominant quinone was ubiquinone 8 (Q-8). The DNA G+C content was 65.7 mol% [from melting temperature ()]. Comparison of phenotypic and chemotaxonomic characteristics indicated that roo10 was distinguishable from its close relatives. Additionally, the DNA–DNA relatedness levels between roo10 and DSM 18571 (22±0.5 %), 5GH38-5 (21±0.2 %) and DSM 17801 (3±1 %) were lower than 70 %. These results indicated that roo10 represented a novel species of the genus , for which the name sp. nov. is proposed. The type strain is roo10 (=BCC 70700=NBRC 110414).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001465
2016-12-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5034.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001465&mimeType=html&fmt=ahah

References

  1. Araújo W. L., Marcon J., Maccheroni W. Jr., Van Elsas J. D., Van Vuurde J. W., Azevedo J. L.. 2002; Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol68:4906–4914 [CrossRef][PubMed]
    [Google Scholar]
  2. Atlas R., Snyder J.. 2011; Reagents, Stains and Media: Bacteriology pp.272–303 Edited by Versalovic J., Carroll K., Funke G., Jorgensen J., Landry M., Warnock D.. Washington, DC: ASM press;
    [Google Scholar]
  3. Chang J. S., Chou C. L., Lin G. H., Sheu S. Y., Chen W. M.. 2005; Pseudoxanthomonas Kaohsiungensis, sp. nov., a novel bacterium isolated from oil-polluted site produces extracellular surface activity. Syst Appl Microbiol28:137–144 [CrossRef][PubMed]
    [Google Scholar]
  4. Chen M. Y., Tsay S. S., Chen K. Y., Shi Y. C., Lin Y. T., Lin G. H.. 2002; Pseudoxanthomonas taiwanensis sp. nov., a novel thermophilic, N2O-producing species isolated from hot springs. Int J Syst Evol Microbiol52:2155–2211 [CrossRef][PubMed]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  8. Finkmann W., Altendorf K., Stackebrandt E., Lipski A.. 2000; Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol50:273–282 [CrossRef][PubMed]
    [Google Scholar]
  9. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  10. Gomori G.. 1955; Preparation of buffers for use in enzyme studies. Methods Enzymol1:138–146[CrossRef]
    [Google Scholar]
  11. Kämpfer P., Kroppenstedt R. M.. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol42:989–1005 [CrossRef]
    [Google Scholar]
  12. Kilburn J. O., O'Donnell K. F., Silcox V. A., David H. L.. 1973; Preparation of a stable mycobacterial Tween hydrolysis test substrate. Appl Microbiol26:826[PubMed]
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim S. J., Ahn J. H., Weon H. Y., Lim J. M., Kim S. G., Kwon S. W.. 2015; Pseudoxanthomonas sangjuensis sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol65:3170–3174 [CrossRef][PubMed]
    [Google Scholar]
  15. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  16. Komagata K., Suzuki K.. 1987; Lipid and Cell-Wall Analysis in Bacterial Systematics pp.161–208 Edited by Colwell R. R., Grigorova R.. Orlando: Academic Press;
    [Google Scholar]
  17. Kumari K., Sharma P., Tyagi K., Lal R.. 2011; Pseudoxanthomonas indica sp. nov., isolated from a hexachlorocyclohexane dumpsite. Int J Syst Evol Microbiol61:2107–2111 [CrossRef][PubMed]
    [Google Scholar]
  18. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp.115–175 Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley & Sons;
    [Google Scholar]
  19. Lee D. S., Ryu S. H., Hwang H. W., Kim Y. J., Park M., Lee J. R., Lee S. S., Jeon C. O.. 2008; Pseudoxanthomonas sacheonensis sp. nov., isolated from BTEX-contaminated soil in Korea, transfer of Stenotrophomonas dokdonensis Yoon et al. 2006 to the genus Pseudoxanthomonas as Pseudoxanthomonas dokdonensis comb. nov. and emended description of the genus Pseudoxanthomonas. Int J Syst Evol Microbiol58:2235–2240 [CrossRef][PubMed]
    [Google Scholar]
  20. Li D., Pang H., Sun L., Fan J., Li Y., Zhang J.. 2014; Pseudoxanthomonas wuyuanensis sp. nov., isolated from saline–alkali soil. Int J Syst Evol Microbiol64:799–804 [CrossRef][PubMed]
    [Google Scholar]
  21. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol3:208–218 [CrossRef]
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  23. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  24. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  25. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  26. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  27. Thierry S., Macarie H., Iizuka T., Geissdörfer W., Assih E. A., Spanevello M., Verhe F., Thomas P., Fudou R. et al. 2004; Pseudoxanthomonas mexicana sp. nov. and Pseudoxanthomonas japonensis sp. nov., isolated from diverse environments, and emended descriptions of the genus Pseudoxanthomonas Finkmann et al. 2000 and of its type species. Int J Syst Evol Microbiol54:2245–2255 [CrossRef][PubMed]
    [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  29. Verlander C. P.. 1992; Detection of horseradish peroxidase by colorimetry. In Nonisotopic DNA Probe Techniques pp.185–201 Edited by Kricka L. J.. New York: Academic Press;[CrossRef]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464[CrossRef]
    [Google Scholar]
  31. Zhang L., Wei L., Zhu L., Li C., Wang Y., Shen X.. 2014; Pseudoxanthomonas gei sp. nov., a novel endophytic bacterium isolated from the stem of Geum aleppicum. Antonie van Leeuwenhoek105:653–661 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001465
Loading
/content/journal/ijsem/10.1099/ijsem.0.001465
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error