1887

Abstract

Strain FC2004, a strictly anaerobic, extremely thermophilic heterotroph, was isolated from a hot spring in Thailand. Typical cells of strain FC2004 were rod shaped (0.5–0.6×1.1–2.5 µm) with an outer membrane swelling out over an end. Filaments (10–30 µm long) and membrane-bound spheroids containing two or more cells inside (3–8 µm in diameter) were observed. The temperature range for growth was 60–88°C (optimum 78–80°C), pH range was 6.5–8.5 (optimum pH 7.5) and NaCl concentration range was 0 to <5 g l (optimum 0.5 g l). S stimulated growth yield. S2O3 and NO3 did not influence growth. Glucose, maltose, sucrose, fructose, cellobiose, CM-cellulose and starch were utilized for growth. The membrane was composed mainly of the saturated fatty acids C16:0 and C18:0. The DNA G+C content was 45.8 mol%. The 16S rRNA gene sequence of strain FC2004 revealed highest similarity to species of the genus Fervidobacterium : F. pennivorans DSM 9078 (97–96 %), F. islandicum AW-1 (96 %), F. changbaicum CBS-1 (96 %), F. islandicum H21 (95 %), F. nodosum Rt17-B1 (95 %), F. riparium 1445t (95 %) and F. gondwanense AB39 (93 %). Phylogenetic analysis of 16S rRNA gene sequences and average nucleotide identity analysis suggested that strain FC2004 represented a novel species within the genus Fervidobacterium , for which the name Fervidobacterium thailandense sp. nov. is proposed. The type strain is FC2004 (=JCM 18757=ATCC BAA-2483).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001463
2016-12-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5023.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001463&mimeType=html&fmt=ahah

References

  1. Andrews K. T., Patel B. K..( 1996;). Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. . Int J Syst Bacteriol 46: 265–269. [CrossRef] [PubMed]
    [Google Scholar]
  2. Askew E. F., Smith R.-K..( 2005;). Inorganic nonmetallic constitutuents. . In Standard Methods for the Examination of Water and Wastewater, pp. 4–174. Edited by Eaton A. D., Clesceri L. S., Rice E. W., Greenberg A. E.. Linthicum, MD:: Cadmus Professional Communications;.
    [Google Scholar]
  3. Bhandari V., Gupta R. S..( 2014;). Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations. . Antonie van Leeuwenhoek 105: 143–168.[CrossRef]
    [Google Scholar]
  4. Cai J., Wang Y., Liu D., Zeng Y., Xue Y., Ma Y., Feng Y..( 2007;). Fervidobacterium changbaicum sp. nov., a novel thermophilic anaerobic bacterium isolated from a hot spring of the Changbai Mountains, China. . Int J Syst Evol Microbiol 57: 2333–2336. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cuecas A., Portillo M. C., Kanoksilapatham W., Gonzalez J. M..( 2014;). Bacterial distribution along a 50 °C temperature gradient reveals a parceled out hot spring environment. . Microb Ecol 68: 729–739. [CrossRef] [PubMed]
    [Google Scholar]
  6. Friedrich A. B., Antranikian G..( 1996;). Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. . Appl Environ Microbiol 62: 2875–2882.[PubMed]
    [Google Scholar]
  7. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M..( 2007;). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57: 81–91. [CrossRef] [PubMed]
    [Google Scholar]
  8. Huber R., Woese C. R., Langworthy T. A., Kristjansson J. K., Stetter K. O..( 1990;). Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the ‘Thermotogales’. . Arch Microbiol 154: 105–111. [CrossRef]
    [Google Scholar]
  9. Itoh T., Onishi M., Kudo T., Takashina T., Kato S., Sakamoto M., Ohkuma M., Iino T..( 2016;). Athalassotoga saccharophila gen. nov., sp. nov., isolated from an acidic terrestrial hot spring of Japan, and proposal of Mesoaciditogales ord. nov. and Mesoaciditogaceae fam. nov. in the phylum Thermotogae. . Int J Syst Evol Microbiol 66: 1045–1051. [CrossRef]
    [Google Scholar]
  10. Jeanthon C., Reysenbach A. L., L'Haridon S., Gambacorta A., Pace N. R., Glénat P., Prieur D..( 1995;). Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. . Arch Microbiol 164: 91–97. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kanoksilapatham W., Keawram P., Gonzalez J. M., Robb F. T..( 2015;). Isolation, characterization, and survival strategies of Thermotoga sp. strain PD524, a hyperthermophile from a hot spring in Northern Thailand. . Extremophiles 19: 853–861. [CrossRef] [PubMed]
    [Google Scholar]
  12. Marur J., Doty P..( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5: 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  13. Nam G. W., Lee D. W., Lee H. S., Lee N. J., Kim B. C., Choe E. A., Hwang J. K., Suhartono M. T., Pyun Y. R..( 2002;). Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. . Arch Microbiol 178: 538–547. [CrossRef] [PubMed]
    [Google Scholar]
  14. Patel B. K. C., Morgan H. W., Daniel R. M..( 1985;). Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. . Arch Microbiol 141: 63–69. [CrossRef]
    [Google Scholar]
  15. Podosokorskaya O. A., Merkel A. Y., Kolganova T. V., Chernyh N. A., Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Kublanov I. V..( 2011;). Fervidobacterium riparium sp. nov., a thermophilic anaerobic cellulolytic bacterium isolated from a hot spring. . Int J Syst Evol Microbiol 61: 2697–2701. [CrossRef]
    [Google Scholar]
  16. Reysenbach A. L., Liu Y., Lindgren A. R., Wagner I. D., Sislak C. D., Mets A., Schouten S..( 2013;). Mesoaciditoga lauensis gen. nov., sp. nov., a moderately thermoacidophilic member of the order Thermotogales from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 63: 4724–4729. [CrossRef] [PubMed]
    [Google Scholar]
  17. Sasser M..( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl 20: 1–6.
    [Google Scholar]
  18. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  19. Thompson J. D., Higgins D. G., Gibson T. J..( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22: 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001463
Loading
/content/journal/ijsem/10.1099/ijsem.0.001463
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error