1887

Abstract

A novel, Gram-stain-negative, facultatively anaerobic, halophilic bacterium, designated strain Q1U, was isolated from a sediment sample collected from Qinghai Lake, PR China. The cells of the strain were short rod-shaped (0.2–0.3×0.6–2.5 µm) and non-motile. Strain Q1U formed yellowish colonies and grew at temperatures of 2–37 °C (optimum 30–33 °C), at pH 6.0–9.0 (optimum pH 7.0) and in the presence of 0–20 % (w/v) NaCl (optimum 7.5 %). The major cellular fatty acids were Cω7 (58.6 %), Cω7 and/or Cω6 (14.8 %) and C (10.1 %). The polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, unknown phospholipid and unknown lipids. The genomic DNA G+C content was 61.5 mol%, and the predominant respiratory ubiquinone Q-9. Based on phylogenetic analysis of the 16S rRNA gene sequences and concatenated 16S rRNA, and gene sequences, the isolate was found to belong to the genus in the class The most closely related species were DSM 4743 (98.3 % 16S rRNA sequence similarity), DSM 25870 (98.2 %) and DSM 15725 (98.2 %). DNA–DNA relatedness values between strain Q1U and the type strains of eight other species of the genus ranged from 21.3 % to 10.1 %. On the basis of phenotypic, phylogenetic and chemotaxonomic analyses, and DNA–DNA hybridization relatedness values, strain Q1U is considered to represent a novel species of the genus ; the name sp. nov. is proposed. The type strain is Q1U (=CGMCC 1.15122=KCTC 42517).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001413
2016-11-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4697.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001413&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Ventosa A.. 2006; The family Halomonadaceae. In The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd edn.vol. 6 pp811–815 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E.. New York: Springer;
    [Google Scholar]
  2. Arahal D. R., Vreeland R. H., Litchfield C. D., Mormile M. R., Tindall B. J., Oren A., Bejar V., Quesada E., Ventosa A.. 2007; Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol57:2436–2446 [CrossRef][PubMed]
    [Google Scholar]
  3. Arias S., del Moral A., Ferrer M. R., Tallon R., Quesada E., Béjar V.. 2003; Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles7:319–326 [CrossRef][PubMed]
    [Google Scholar]
  4. Cowan S. T., Steel K. J.. 1965; Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  5. De la Haba R. R., Márquez M. C., Papke R. T., Ventosa A.. 2012; Multilocus sequence analysis of the family Halomonadaceae. Int J Syst Evol Microbiol62:520–538 [CrossRef][PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  9. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  10. Franzmann P. D., Burton H. R., Mcmeekin T. A.. 1987; Halomonas subglaciescola, a new species of halotolerant bacteria isolated from Antarctica. Int J Syst Bacteriol37:27–34 [CrossRef]
    [Google Scholar]
  11. Franzmann P. D., Wehmeyer U., Stackebrandt E.. 1988; Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera halomonas and Deleya. Syst Appl Microbiol11:16–19 [CrossRef]
    [Google Scholar]
  12. Heyrman J., Balcaen A., De Vos P., Swings J.. 2002; Halomonas muralis sp. nov., isolated from microbial biofilms colonizing the walls and murals of the Saint-Catherine chapel (Castle Herberstein, Austria). Int J Syst Evol Microbiol52:2049–2054 [CrossRef][PubMed]
    [Google Scholar]
  13. Huss V. A. R., Festl H., Schleifer K. H.. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  14. Jiang J. Q., Pan Y. Y., Hu S. X., Zhang X. X., Hu B. Z., Huang H. P., Hong S., Meng J., Li C., Wang K. B.. 2014; Halomonas songnenensis sp. nov., a moderately halophilic bacterium isolated from saline and alkaline soils. Int J Syst Evol Microbiol64:1662–1669 [CrossRef][PubMed]
    [Google Scholar]
  15. Kämpfer P., Kroppenstedt R. M.. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol42:989–1005 [CrossRef]
    [Google Scholar]
  16. Kaye J. Z., Márquez M. C., Ventosa A., Baross J. A.. 2004; Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol54:499–511 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim K. K., Lee K. C., Oh H. M., Lee J. S.. 2010; Halomonas stevensii sp. nov., Halomonas hamiltonii sp. nov. and Halomonas johnsoniae sp. nov., isolated from a renal care centre. Int J Syst Evol Microbiol60:369–377 [CrossRef][PubMed]
    [Google Scholar]
  18. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  19. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  20. Komagata K., Suzuki K.. 1987; Lipid and cell-wall analysis in bacterial systematic. Methods Microbiol19:161–207[CrossRef]
    [Google Scholar]
  21. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol3:208–218 [CrossRef]
    [Google Scholar]
  22. Martínez-Cánovas M. J., Quesada E., Llamas I., Béjar V.. 2004; Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Evol Microbiol54:733–737 [CrossRef]
    [Google Scholar]
  23. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V.. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol25:360–375 [CrossRef][PubMed]
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  25. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  26. Mormile M. R., Romine M. F., Garcia M. T., Ventosa A., Bailey T. J., Peyton B. M.. 1999; Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst Appl Microbiol22:551–558 [CrossRef][PubMed]
    [Google Scholar]
  27. Oren A.. 2010; Industrial and environmental applications of halophilic microorganisms. Environ Technol31:825–834 [CrossRef][PubMed]
    [Google Scholar]
  28. Oueriaghli N., González-Domenech C. M., Martínez-Checa F., Muyzer G., Ventosa A., Quesada E., Béjar V.. 2013; Diversity and distribution of Halomonas in Rambla Salada, a hypersaline environment in the southeast of Spain. FEMS Microbiol Ecol87:460–474 [CrossRef][PubMed]
    [Google Scholar]
  29. Parte A. C.. 2016; List of prokaryotic names with standing in nomenclature. http://www.bacterio.net
  30. Poli A., Kazak H., Gürleyendağ B., Tommonaro G., Pieretti G., Nicolaus B., Ŏner E. T.. 2009; High level synthesis of levan by a novel Halomonas species growing on defined media. Carbohydrate Polymers78:651–657 [CrossRef]
    [Google Scholar]
  31. Quesada E., Béjar V., Ferrer M. R., Calvo C., Llamas I., Martínez-Checa F., Arias S., Ruiz-García C., Páez R. et al. 2004; Moderately halophilic, exopolysaccharide-producing bacteria. In Halophilic Microorganisms pp297–314 Edited by Ventosa A.. Berlin: Springer;[CrossRef]
    [Google Scholar]
  32. Reddy G. S. N., Raghavan P. U. M., Sarita N. B., Prakash J. S. S., Nagesh N., Delille D., Shivaji S.. 2003; Halomonas glaciei sp. nov., isolated from fast ice of Adelie Land, Antarctica. Extremophiles7:55–61
    [Google Scholar]
  33. Romanenko L. A., Schumann P., Rohde M., Mikhailov V. V., Stackebrandt E.. 2002; Halomonas halocynthiae sp. nov., isolated from the marine ascidian Halocynthia aurantium. Int J Syst Evol Microbiol52:1767–1772 [CrossRef][PubMed]
    [Google Scholar]
  34. Romano I., Lama L., Nicolaus B., Poli A., Gambacorta A., Giordano A.. 2006; Halomonas alkaliphila sp. nov., a novel halotolerant alkaliphilic bacterium isolated from a salt pool in Campania (Italy). J Gen Appl Microbiol52:339–348 [CrossRef][PubMed]
    [Google Scholar]
  35. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425
    [Google Scholar]
  36. Sánchez-Porro C., Martín S., Mellado E., Ventosa A.. 2003; Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol94:295–300 [CrossRef][PubMed]
    [Google Scholar]
  37. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc;
    [Google Scholar]
  38. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  39. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  40. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A.. 1982; Numerical taxonomy of moderately halophilic gram-negative rods. Microbiology128:1959–1968 [CrossRef]
    [Google Scholar]
  41. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E.. 1980; Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol30:485–495 [CrossRef]
    [Google Scholar]
  42. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International committee on systematic bacteriology report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int J Syst Bacterial37:463–464[CrossRef]
    [Google Scholar]
  43. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001413
Loading
/content/journal/ijsem/10.1099/ijsem.0.001413
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error