1887

Abstract

Obligately alkaliphilic and halophilic strains, designated In2-9 and D2-7, were isolated from a fermented indigo ( Lour.) liquor sample obtained from a craft centre in Date City, Hokkaido, Japan. The 16S rRNA gene sequence phylogeny suggested that strain In2-9 is a member of the genus with the closest relatives being the alkaliphilic species of the genus , JCM 9152 (96.4 % 16S rRNA gene sequence similarity) and DSM 485 (96.5 %). Cells of the isolate stained Gram-positive and were facultatively anaerobic straight rods that were motile by peritrichous flagella. Strain In2-9 grew between 13 and 45 °C with optimum growth at approximately 35–37 °C. The isolates grew in the pH range of 8–12 with optimum growth at pH 10. The isoprenoid quinone detected was menaquinone-6 (MK-6) and the DNA G+C content was 39.4 mol%. The whole-cell fatty acid profile mainly (>10 %) consisted of iso-C, anteiso-C and C. Spore shape and location and chemotaxonomic characteristics revealed that the isolates were distinctly different from phylogenetic neighbouring alkaliphilic species of the genus . On the basis of phenotypic and chemotaxonomic characteristics and phylogenetic data, the isolates represent a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is In2-9 (=JCM 30831=NCIMB 14982), and strain D2-7 is an additional strain of the species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001405
2016-11-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4650.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001405&mimeType=html&fmt=ahah

References

  1. Aino K., Narihiro T., Minamida K., Kamagata Y., Yoshimune K., Yumoto I.. 2010; Bacterial community characterization and dynamics of indigo fermentation. FEMS Microbiol Ecol74:174–183 [CrossRef][PubMed]
    [Google Scholar]
  2. Barrow G. I., Feltham R. K. A.. (editors) 1993; Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press;[CrossRef]
    [Google Scholar]
  3. Blum J. S., Bindi A. B., Buzzelli J., Stolz J. F., Oremland R. S.. 1998; Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiology171:19–30[CrossRef]
    [Google Scholar]
  4. Collins M. D., Jones D.. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Microbiol48:459–470 [CrossRef]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  6. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  7. Guindon S., Gascuel O.. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol52:696–704 [CrossRef][PubMed]
    [Google Scholar]
  8. Hirota K., Aino K., Nodasaka Y., Morita N., Yumoto I.. 2013a; Amphibacillus indicireducens sp. nov., an alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol63:464–469 [CrossRef][PubMed]
    [Google Scholar]
  9. Hirota K., Aino K., Nodasaka Y., Yumoto I.. 2013b; Oceanobacillus indicireducens sp. nov., a facultative alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol63:1437–1442 [CrossRef][PubMed]
    [Google Scholar]
  10. Hirota K., Aino K., Yumoto I.. 2013c; Amphibacillus iburiensis sp. nov., an alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol63:4303–4308 [CrossRef][PubMed]
    [Google Scholar]
  11. Hirota K., Aino K., Yumoto I.. 2016; Fermentibacillus polygoni gen. nov., sp. nov., an alkaliphile that reduces indigo dye. Int J Syst Evol Microbiol66:2247–2253 [CrossRef][PubMed]
    [Google Scholar]
  12. Ki J.-S., Zhang W., Qian P.-Y.. 2009; Discovery of marine Bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification. J Microbiol Methods77:48–57 [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  14. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol3:208–218 [CrossRef]
    [Google Scholar]
  15. Minnikin D. E., Collins M. D., Goodfellow M.. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Microbiol47:87–95 [CrossRef]
    [Google Scholar]
  16. Nakajima K., Hirota K., Nodasaka Y., Yumoto I.. 2005; Alkalibacterium iburiense sp. nov., an obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol55:1525–1530 [CrossRef][PubMed]
    [Google Scholar]
  17. Nielsen P., Fritze D., Priest F. G.. 1995; Phenetic diversity of alkaliphilic strains: proposal for nine new species. Microbiology141:1745–1761 [CrossRef]
    [Google Scholar]
  18. Nogi Y., Takami H., Horikoshi K.. 2005; Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol55:2309–2315 [CrossRef][PubMed]
    [Google Scholar]
  19. Padden A. N., Dillon V. M., Edmonds J., Collins M. D., Alvarez N., John P.. 1999; An indigo-reducing moderate thermophile from a woad vat, Clostridium isatidis sp. nov. Int J Syst Bacteriol49:1025–1031 [CrossRef][PubMed]
    [Google Scholar]
  20. Paster B. J., Russell M. K., Alpagot T., Lee A. M., Boches S. K., Galvin J. L., Dewhirst F. E.. 2002; Bacterial diversity in necrotizing ulcerative periodontitis in HIV-positive subjects. Ann Periodontol7:8–16 [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425
    [Google Scholar]
  22. Sorokin I. D., Kravchenko I. K., Tourova T. P., Kolganova T. V., Boulygina E. S., Sorokin D. Y.. 2008; Bacillus alkalidiazotrophicus sp. nov., a diazotrophic, low salt-tolerant alkaliphile isolated from Mongolian soda soil. Int J Syst Evol Microbiol58:2459–2464 [CrossRef][PubMed]
    [Google Scholar]
  23. Staneck J. L., Roberts G. D.. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol28:226–231[PubMed]
    [Google Scholar]
  24. Takahara Y., Tanabe O.. 1960; Studies on the reduction of indigo in industrial fermentation Vat (VI): on the taxonomic characteristics of strain No. S-8. J Ferment Technol38:297–299
    [Google Scholar]
  25. Tamaoka J., Komagata K.. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett25:125–128 [CrossRef]
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  27. Teather R. M., Wood P. J.. 1982; Use of Congo red polysaccharide interaction in enumeration of cellulolytic bacteria from bovine rumen. Appl Environ Microbiol43:777–780
    [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  29. Yumoto I., Yamazaki K., Sawabe T., Nakano K., Kawasaki K., Ezura Y., Shinano H.. 1998; Bacillus horti sp. nov., a new Gram-negative alkaliphilic bacillus. Int J Syst Bacteriol48:565–571 [CrossRef][PubMed]
    [Google Scholar]
  30. Yumoto I., Yamazaki K., Hishinuma M., Nodasaka Y., Suemori A., Nakajima K., Inoue N., Kawasaki K.. 2001; Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol51:349–355 [CrossRef][PubMed]
    [Google Scholar]
  31. Yumoto I., Nakamura A., Iwata H., Kojima K., Kusumoto K., Nodasaka Y., Matsuyama H.. 2002; Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol52:85–90 [CrossRef][PubMed]
    [Google Scholar]
  32. Yumoto I., Hirota K., Nodasaka Y., Yokota Y., Hoshino T., Nakajima K.. 2004; Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol54:2379–2383 [CrossRef][PubMed]
    [Google Scholar]
  33. Yumoto I., Hirota K., Nodasaka Y., Tokiwa Y., Nakajima K.. 2008; Alkalibacterium indicireducens sp. nov., an obligate alkaliphile that reduces indigo dye. Int J Syst Evol Microbiol58:901–905 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001405
Loading
/content/journal/ijsem/10.1099/ijsem.0.001405
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error