1887

Abstract

A strictly anaerobic bacterial strain (WN011) was isolated from a methanogenic reactor treating waste from cattle farms. Cells of the strain were Gram-stain-negative curved rods with a polar flagellum. Spores were not produced. The optimum temperature for growth was 35–37 °C and the optimum pH was 6.7. The strain did not utilize carbohydrates as growth substrates. The strain grew in PY medium and produced acetate, butyrate, isovalerate and H2 as well as propionate and isobutyrate as minor products. Amino acids (l-isoleucine, l-leucine, l-lysine, l-serine, l-threonine and l-valine) added to PY medium enhanced growth of the strain and increased the amounts of fermentation products. Oxidase, catalase and nitrate-reducing activities were negative. Hydrogen sulfide was produced. The genomic DNA G+C content was 38.8 mol%. Compounds related to iso-C15 : 0 (fatty acid, dimethylacetal and aldehyde) were detected as predominant components by the cellular fatty acids analysis. The diagnostic diamino acid of the cell-wall peptidoglycan was meso-diaminopimelic acid. On the basis of 16S rRNA gene sequences, three clones from wastewater were very closely related to strain WN011 (up to 99.9 % sequence similarity). The most closely related described species were those in cluster XIVa of the class Clostridia such as Ruminococcus gauvreauii (93.8 % 16S rRNA gene sequence similarity), Clostridium fimetarium (93.5 %) and Clostridium bolteae (93.5 %). Based on the distinct differences in phylogenetic and phenotypic characteristics of strain WN011 from those of related species, it is concluded that strain WN011 represents a novel species of a new genus in the family Lachnospiraceae, for which the name Falcatimonas natans gen. nov., sp. nov. is proposed. The type strain of the type species is WN011 (=JCM 16476=DSM 22923).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001403
2016-11-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4639.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001403&mimeType=html&fmt=ahah

References

  1. Abe K., Ueki A., Ohtaki Y., Kaku N., Watanabe K., Ueki K..( 2012;). Anaerocella delicata gen. nov., sp. nov., a strictly anaerobic bacterium in the phylum Bacteroidetes isolated from a methanogenic reactor of cattle farms. . J Gen Appl Microbiol58:405–412. [CrossRef][PubMed]
    [Google Scholar]
  2. Akasaka H., Ueki A., Hanada S., Kamagata Y., Ueki K..( 2003;). Propionicimonas paludicola gen. nov., sp. nov., a novel facultatively anaerobic, Gram-positive, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil. . Int J Syst Evol Microbiol53:1991–1998. [CrossRef][PubMed]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J..( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res25:3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  4. Blenden D. C., Goldberg H. S..( 1965;). Silver impregnation stain for Leptospira and flagella. . J Bacteriol89:899–900.
    [Google Scholar]
  5. Brosius J., Dull T. J., Sleeter D. D., Noller H. F..( 1981;). Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. . J Mol Biol148:107–127. [CrossRef][PubMed]
    [Google Scholar]
  6. Buckel W..( 1999;). Anaerobic energy metabolism. . In Biology of the Prokaryotes , pp. 278–326. Edited by Lengeler J. W., Drews G., Schlegel H. G.. Stuttgart:: Blackwell Science;.
    [Google Scholar]
  7. Chouari R., Le Paslier D., Daegelen P., Ginestet P., Weissenbach J., Sghir A..( 2005;). Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. . Environ Microbiol7:1104–1115. [CrossRef][PubMed]
    [Google Scholar]
  8. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A..( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. . Int J Syst Bacteriol44:812–826. [CrossRef][PubMed]
    [Google Scholar]
  9. Domingo M. C., Huletsky A., Boissinot M., Bernard K. A., Picard F. J., Bergeron M. G..( 2008;). Ruminococcus gauvreauii sp. nov., a glycopeptide-resistant species isolated from a human faecal specimen. . Int J Syst Evol Microbiol58:1393–1397. [CrossRef][PubMed]
    [Google Scholar]
  10. Felsenstein J..( 2006);. PHYLIP (phylogeny inference package), version 3.66. Department of Genome Science, University of Washington, Seattle, USA.
  11. Holdeman L. V., Cato E. P., Moore W. E. C..( 1977;). Anaerobe Laboratory Manual, , 4th edn.. Blacksburg, VA:: Virginia Polytechnic Institute and State University;.
    [Google Scholar]
  12. Komagata K., Suzuki K..( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol19:161–207.[CrossRef]
    [Google Scholar]
  13. Lawson P. A., Rainey F. A..( 2016;). Proposal to restrict the genus Clostridium Prazmowski to Clostridium butyricum and related species. . Int J Syst Evol Microbiol66:1009–1016.[CrossRef]
    [Google Scholar]
  14. Liu C., Finegold S. M., Song Y., Lawson P. A..( 2008;). Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. . Int J Syst Evol Microbiol58:1896–1902.[CrossRef]
    [Google Scholar]
  15. Miller L. T..( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol16:584–586.[PubMed]
    [Google Scholar]
  16. Moore L. V., Bourne D. M., Moore W. E..( 1994;). Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic gram-negative bacilli. . Int J Syst Bacteriol44:338–347. [CrossRef][PubMed]
    [Google Scholar]
  17. Oren A., Garrity G. M..( 2015;). Aminicella lysinilytica gen. nov., sp. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published. Validation List no. 163. . Int J Syst Evol Microbiol65:1105–1111.[CrossRef]
    [Google Scholar]
  18. Rainey F. A., Hollen B. J., Small A..( 2009;). Genus I. Clostridium Prazmowski 1880, 23AL. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 3 , pp. 736–864 . Edited by De Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., F. A. Rainey, Schleifer, Whitman W. B.. New York:: Springer;.
    [Google Scholar]
  19. Ramsay I. R., Pullammanappallil P. C..( 2001;). Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. . Biodegradation11:247–257.[CrossRef]
    [Google Scholar]
  20. Rosero J. A., Killer J., Sechovcová H., Mrázek J., Benada O., Fliegerová K., Havlík J., Kopečný J..( 2016;). Reclassification of Eubacterium rectale (Hauduroy et al. 1937) Prévot 1938 in a new genus Agathobacter gen. nov. as Agathobacter rectalis comb. nov., and description of Agathobacter ruminis sp. nov., isolated from the rumen contents of sheep and cows. . Int J Syst Evol Microbiol66:768–773.[CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol4:406–425.[PubMed]
    [Google Scholar]
  22. Satoh A., Watanabe M., Ueki A., Ueki K..( 2002;). Physiological properties and phylogenetic affiliations of anaerobic bacteria isolated from roots of rice plants cultivated on a paddy field. . Anaerobe8:233–246. [CrossRef]
    [Google Scholar]
  23. Smith E. A., Macfarlane G. T..( 1997;). Dissimilatory amino acid metabolism in human colonic bacteria. . Anaerobe3:327–337. [CrossRef][PubMed]
    [Google Scholar]
  24. Song Y., Liu C., Molitoris D. R., Tomzynski T. J., Lawson P. A., Collins M. D., Finegold S. M..( 2003;). Clostridium bolteae sp. nov., isolated from human sources. . Syst Appl Microbiol26:84–89. [CrossRef][PubMed]
    [Google Scholar]
  25. Sugawara Y., Ueki A., Abe K., Kaku N., Watanabe K., Ueki K..( 2011;). Propioniciclava tarda gen. nov., sp. nov., isolated from a methanogenic reactor treating waste from cattle farms. . Int J Syst Evol Microbiol61:2298–2303. [CrossRef][PubMed]
    [Google Scholar]
  26. Thompson J. D., Higgins D. G., Gibson T. J..( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res22:4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  27. Ueki A., Abe K., Suzuki D., Kaku N., Watanabe K., Ueki K..( 2009;). Anaerosphaera aminiphila gen. nov., sp. nov., a glutamate-degrading, Gram-positive anaerobic coccus isolated from a methanogenic reactor treating cattle waste. . Int J Syst Evol Microbiol59:3161–3167. [CrossRef][PubMed]
    [Google Scholar]
  28. Ueki A., Abe K., Ohtaki Y., Kaku N., Watanabe K., Ueki K..( 2011;). Bacteroides paurosaccharolyticus sp. nov., isolated from a methanogenic reactor treating waste from cattle farms. . Int J Syst Evol Microbiol61:448–453. [CrossRef][PubMed]
    [Google Scholar]
  29. Ueki A., Shibuya T., Kaku N., Ueki K..( 2015;). Aminocella lysinolytica gen. nov., sp. nov., a l-lysine-degrading, strictly anaerobic bacterium in the class Clostridia isolated from a methanogenic reactor of cattle farms. . Arch Microbiol197:97–104. [CrossRef][PubMed]
    [Google Scholar]
  30. Ueki A., Ohtaki Y., Kaku N., Ueki K..( 2016;). Descriptions of Anaerotaenia torta gen. nov., sp. nov. and Anaerocolumna cellulosilytica gen. nov., sp. nov. isolated from a methanogenic reactor of cattle waste and reclassification of Clostridium aminovalericum, Clostridium jejuense and Clostridium xylanovorans as Anaerocolumna species. . Int J Syst Evol Microbiol66:2936–2943. [CrossRef][PubMed]
    [Google Scholar]
  31. Wade W. G..( 2009;). Genus I. Eubacterium Prévot 1938, 294AL. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 3 , pp. 865–891 . Edited by De Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B.. New York:: Springer;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001403
Loading
/content/journal/ijsem/10.1099/ijsem.0.001403
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error