1887

Abstract

A novel Gram-stain-negative, facultatively anaerobic, filamentous, and yellowish-white-pigmented marine bacterium, designated strain FB208, was isolated from marine sediment obtained off the coastal area of Weihai, China. Cells of strain FB208 were filamentous during exponential growth, fragmented to rods in the stationary growth phase and became spherical in aged cultures. It grew optimally at 33 °C, at pH 7.0–7.5 and in the presence of 2.0–3.0 % (w/v) NaCl. Based on the 16S rRNA gene sequence, strain FB208 was found to be closely related to DSM 21950 (96.9 % similarity) and JCM 15579 (96.4 %), with less than 90.0 % sequence similarity to other genera of the class . Phylogenetic analysis, also based on 16S rRNA gene sequences, placed strain FB208 in the genus , family . The predominant isoprenoid quinone of strain FB208 was identified as menaquinone MK-7. The main cellular fatty acids were iso-C, iso-C 3-OH and iso-C 9, and the major polar lipids were an unidentified lipid and aminophospholipid. The G+C content of the genomic DNA was 43.8 mol%. Based on these phylogenetic and phenotypic data, strain FB208 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is FB208 (=KCTC 42591=MCCC 1H00113).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001395
2016-11-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4589.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001395&mimeType=html&fmt=ahah

References

  1. CLSI 2012; Performance Standards for Antimicrobial Susceptibility Testing; 22nd Informational SupplementM100–S22 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  2. Dong X. Z., Cai M. Y.. 2001; Determination of biochemical properties. In Manual for the Systematic Identification of General Bacteria pp.370–398 Beijing: Science Press;
    [Google Scholar]
  3. Du Z. J., Wang Y., Dunlap C., Rooney A. P., Chen G. J.. 2014; Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam. nov. Int J Syst Evol Microbiol64:1690–1696 [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  5. Fitch W. M.. 1971; Towards defining the course of evolution: minimum change for a specific tree topology. System Zool20:406–416 [CrossRef]
    [Google Scholar]
  6. Iino T., Mori K., Itoh T., Kudo T., Suzuki K., Ohkuma M.. 2014; Description of Mariniphaga anaerophila gen. nov., sp. nov., a facultatively aerobic marine bacterium isolated from tidal flat sediment, reclassification of the Draconibacteriaceae as a later heterotypic synonym of the Prolixibacteraceae and description of the family Marinifilaceae fam. nov. Int J Syst Evol Microbiol64:3660–3667 [CrossRef][PubMed]
    [Google Scholar]
  7. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  8. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  9. Kroppenstedt R. M.. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr5:2359–2367 [CrossRef]
    [Google Scholar]
  10. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp.115–175 Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  11. Ludwig W., Euzeby J., Whitman W. B.. 2011; Family II. Marinilabiliaceae fam. nov. In Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 4 pp.49–54 Edited by Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B.. New York/Dordrecht/Heidelberg/London: Springer;
    [Google Scholar]
  12. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  13. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  14. Na H., Kim S., Moon E. Y., Chun J.. 2009; Marinifilum fragile gen. nov., sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol59:2241–2246 [CrossRef][PubMed]
    [Google Scholar]
  15. Ramasamy D., Mishra A. K., Lagier J. C., Padhmanabhan R., Rossi M., Sentausa E., Raoult D., Fournier P. E.. 2014; A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol64:384–391 [CrossRef][PubMed]
    [Google Scholar]
  16. Ruvira M. A., Lucena T., Pujalte M. J., Arahal D. R., Macián M. C.. 2013; Marinifilum flexuosum sp. nov., a new Bacteroidetes isolated from coastal Mediterranean Sea water and emended description of the genus Marinifilum Na et al., 2009. Syst Appl Microbiol36:155–159 [CrossRef][PubMed]
    [Google Scholar]
  17. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc;
    [Google Scholar]
  18. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General, Molecular Bacteriology pp607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis 6.0. Mol Biol Evol30:2725–2729[CrossRef]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001395
Loading
/content/journal/ijsem/10.1099/ijsem.0.001395
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error