1887

Abstract

A Gram-stain-negative, rod-shaped, aerobic and motile bacterial strain, DHOK13, was isolated from the forest soils of Dinghushan Biosphere Reserve, Guangdong Province, PR China (112° 31′ E, 23° 10′ N). It grew optimally at 28–33 °C and pH 7.0–7.5. The main fatty acids were C, C cyclo, C cycloω8, summed feature 2 (C aldehyde and/or unknown 10.9525) and summed feature 8 (Cω7 and/or Cω6). The organism contained ubiquinone Q-8 as the predominant isoprenoid quinone. The total DNA G+C content of strain DHOK13 was 62.0 mol%. Phylogenetic analysis of the 16S rRNA gene, as well as the sequence of the partial housekeeping genes, and , showed consistently that strain DHOK13 formed an independent cluster with LMG 2247. DNA-DNA hybridization studies showed relatively low relatedness values (39 %) of strain DHOK13 with LMG 2247. The phenotypic, chemotaxonomic and phylogenetic data showed that strain DHOK13 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is DHOK13 (=KCTC 42626=LMG 28846).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001387
2016-11-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4537.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001387&mimeType=html&fmt=ahah

References

  1. Chen W. M., James E. K., Coenye T., Chou J. H., Barrios E., de Faria S. M., Elliott G. N., Sheu S. Y., Sprent J. I. et al. 2006; Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol56:1847–1851 [CrossRef][PubMed]
    [Google Scholar]
  2. Chun J., Rainey F. A.. 2014; Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol64:316–324 [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M., Jones D.. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol48:459–470[CrossRef]
    [Google Scholar]
  4. Dobritsa A. P., Samadpour M.. 2016; Transfer of eleven Burkholderia species to the genus Paraburkholderia and proposal of Caballeronia gen. nov., a new genus to accommodate twelve species of Burkholderia Paraburkholderia. Int J Syst Evol Microbiol66:2836–2846 [CrossRef]
    [Google Scholar]
  5. Estrada-de Los Santos P., Vacaseydel-Aceves N. B., Martínez-Aguilar L., Cruz-Hernández M. A., Mendoza-Herrera A., Caballero-Mellado J.. 2011; Cupriavidus and Burkholderia species associated with agricultural plants that grow in alkaline soils. J Microbiol49:867–876 [CrossRef][PubMed]
    [Google Scholar]
  6. Estrada-de los Santos P., Vinuesa P., Martínez-Aguilar L., Hirsch A. M., Caballero-Mellado J.. 2013; Phylogenetic analysis of burkholderia species by multilocus sequence analysis. Curr Microbiol67:51–60 [CrossRef][PubMed]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229[CrossRef]
    [Google Scholar]
  8. Gillis M., Van T., Bardin R., Goor M., Hebbar P., Willems A., Segers P., Kersters K., Heulin T. et al. 1995; Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Bacteriol45:274–289[CrossRef]
    [Google Scholar]
  9. Gyaneshwar P., Hirsch A. M., Moulin L., Chen W. M., Elliott G. N., Bontemps C., Estrada-de Los Santos P., Gross E., Dos Reis F. B. et al. 2011; Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact24:1276–1288 [CrossRef][PubMed]
    [Google Scholar]
  10. Kroppenstedt R. M.. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP 18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr5:2359–2367[CrossRef]
    [Google Scholar]
  11. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E.. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradorhizobium japonicum. J Syst Bactericol38:358–361[CrossRef]
    [Google Scholar]
  12. Lane D. J.. 1991; 16S/23S rRNA Sequencing Nucleic Acid Techniques in Bacterial Systematics pp115–175 Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  13. Mesbah M., Premachandran U. W., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by highperformance liquid chromatography. Int J Syst Bacteriol39:159–167[CrossRef]
    [Google Scholar]
  14. Miller L. T.. 1982; A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol16:584–586
    [Google Scholar]
  15. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  16. Rusch A., Islam S., Savalia P., Amend J. P.. 2015; Burkholderia insulsa sp. nov., a facultatively chemolithotrophic bacterium isolated from an arsenic-rich shallow marine hydrothermal system. Int J Syst Evol Microbiol65:189–194 [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  18. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101.bMicrobial ID, Inc., Newark, DE, USA.
  19. Sawana A., Adeolu M., Gupta R. S.. 2014; Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet5:429 [CrossRef][PubMed]
    [Google Scholar]
  20. Sheu S. Y., Chou J. H., Bontemps C., Elliott G. N., Gross E., dos Reis Junior F. B., Melkonian R., Moulin L., James E. K. et al. 2013; Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp. Int J Syst Evol Microbiol63:435–441 [CrossRef][PubMed]
    [Google Scholar]
  21. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp.607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Spilker T., Baldwin A., Bumford A., Dowson C. G., Mahenthiralingam E., LiPuma J. J.. 2009; Expanded multilocus sequence typing for burkholderia species. J Clin Microbiol47:2607–2610 [CrossRef][PubMed]
    [Google Scholar]
  23. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  24. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M.. 1992; Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol36:1251–1275 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001387
Loading
/content/journal/ijsem/10.1099/ijsem.0.001387
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error