1887

Abstract

Gram-stain-positive, acid-fast-positive, rapidly growing, rod-shaped bacteria (designated as strains JC290, JC430 and JC431) were isolated from paddy cultivated soils on the Western Ghats of India. Phylogenetic analysis placed the three strains among the rapidly growing mycobacteria, being most closely related to Mycobacterium tokaiense 47503 (98.8 % 16S rRNA gene sequence similarity), Mycobacterium murale MA112/96 (98.8 %) and a few other Mycobacterium species. The level of DNA–DNA reassociation of the three strains with M. tokaiense DSM 44635 was 23.4±4 % (26.1±3 %, reciprocal analysis) and 21.4±2 % (22.1±4 %, reciprocal analysis). The three novel strains shared >99.9 % 16S rRNA gene sequence similarity and DNA–DNA reassociation values >85 %. Furthermore, phylogenetic analysis based on concatenated sequences (3071 bp) of four housekeeping genes (16S rRNA, hsp65, rpoB and sodA) revealed that strain JC290 is clearly distinct from all other Mycobacterium species. The three strains had diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositolmannosides, unidentified phospholipids, unidentified glycolipids and an unidentified lipid as polar lipids. The predominant isoprenoid quinone for all three strains was MK-9(H2). Fatty acids were C17 : 1ω7c, C16 : 0, C18 : 1 ω9c, C16 : 1 ω7c/C16 : 1 ω6c and C19 : 1 ω7c/C19 : 1 ω6c for all the three strains. On the basis of phenotypic, chemotaxonomic and phylogenetic data, it was concluded that strains JC290, JC430 and JC431 are members of a novel species within the genus Mycobacterium and for which the name Mycobacterium oryzae sp. nov. is proposed. The type strain is JC290 (=KCTC 39560=LMG 28809).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001386
2016-11-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4530.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001386&mimeType=html&fmt=ahah

References

  1. Batoni G., Bottai D., Maisetta G., Pardini M., Boschi A., Florio W., Esin S., Campa M..( 2001;). Involvement of the Mycobacterium tuberculosis secreted antigen SA-5K in intracellular survival of recombinant Mycobacterium smegmatis. . FEMS Microbiol Lett205:125–129. [CrossRef][PubMed]
    [Google Scholar]
  2. Brown-Elliott B. A., Wallace R. J..( 2002;). Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. . Clin Microbiol Rev15:716–746. [CrossRef][PubMed]
    [Google Scholar]
  3. Cassidy P. M., Hedberg K., Saulson A., McNelly E., Winthrop K. L..( 2009;). Nontuberculous mycobacterial disease prevalence and risk factors: a changing epidemiology. . Clin Infect Dis49:e124129. [CrossRef][PubMed]
    [Google Scholar]
  4. Castresana J..( 2000;). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. . Mol Biol Evol17:540–552. [CrossRef][PubMed]
    [Google Scholar]
  5. Chakravarthy S. K., Ramaprasad E. V. V., Shobha E., Sasikala Ch., Ramana Ch. V..( 2012;). Rhodoplanes piscinae sp. nov. isolated from pond water. . Int J Syst Evol Microbiol62:2828–2834. [CrossRef][PubMed]
    [Google Scholar]
  6. De Groote M. A., Huitt G..( 2006;). Infections due to rapidly growing mycobacteria. . Clin Infect Dis42:1756–1763. [CrossRef][PubMed]
    [Google Scholar]
  7. Devulder G., Pérouse de Montclos M., Flandrois J. P., Montclos M. P. D..( 2005;). A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. . Int J Syst Evol Microbiol55:293–302. [CrossRef][PubMed]
    [Google Scholar]
  8. Falkinham J. O..( 2013;). Ecology of nontuberculous mycobacteria – where do human infections come from?. Semin Respir Crit Care Med34:95–102. [CrossRef][PubMed]
    [Google Scholar]
  9. Ganji R., Dhali S., Rizvi A., Sankati S., Vemula M. H., Mahajan G., Rapole S., Banerjee S..( 2016a;). Proteomics approach to understand reduced clearance of mycobacteria and high viral titers during HIV-mycobacteria co-infection. . Cell Microbiol18:355–368. [CrossRef][PubMed]
    [Google Scholar]
  10. Ganji R., Dhali S., Rizvi A., Rapole S., Banerjee S..( 2016b;). Understanding HIV-Mycobacteria synergism through comparative proteomics of intra-phagosomal mycobacteria during mono- and HIV co-infection. . Sci Rep6:22060. [CrossRef]
    [Google Scholar]
  11. Iona E., Pardini M., Gagliardi M. C., Colone M., Stringaro A. R., Teloni R., Brunori L., Nisini R., Fattorini L., Giannoni F..( 2012;). Infection of human THP-1 cells with dormant Mycobacterium tuberculosis. . Microbes Infect14:959–967. [CrossRef][PubMed]
    [Google Scholar]
  12. Johnson M. M., Odell J. A..( 2014;). Nontuberculous mycobacterial pulmonary infections. . J Thorac Dis6:210–220. [CrossRef][PubMed]
    [Google Scholar]
  13. Katoch V. M..( 2004;). Infections due to non-tuberculous mycobacteria (NTM). . Indian J Med Res120:290–304.[PubMed]
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol62:716–721. [CrossRef][PubMed]
    [Google Scholar]
  15. Kimura M..( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol16:111–120. [CrossRef][PubMed]
    [Google Scholar]
  16. Kondo A., Mori K., Iwata J., Tamura M., Yamamoto T., Nakao Y., Maeda M..( 2006;). Caseous necrotic granuloma in the pituitary stalk due to nontuberculous Mycobacteria (Mycobacterium tokaiense) infection-case report. . Neurol Med Chir46:80–83. [CrossRef]
    [Google Scholar]
  17. Lehmann K. B., Neumann R..( 1896;). Atlas Und Grundriss Der Bakteriologie Und Lehrbuch Der Speziellen Bakteriologischen Diagnostik, , 1st edn.. Munchen:: J.F. Lehmann;.
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B..( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol39:159–167. [CrossRef]
    [Google Scholar]
  19. Padgitt P. J., Moshier S. E..( 1987;). Mycobacterium poriferae sp. nov., a Scotochromogenic, Rapidly Growing Species Isolated from a Marine Sponge. . Int J Syst Bacteriol37:186–191. [CrossRef]
    [Google Scholar]
  20. Prevots D. R., Marras T. K..( 2015;). Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. . Clin Chest Med36:13–34. [CrossRef][PubMed]
    [Google Scholar]
  21. Ramaprasad E. V. V., Sasikala Ch., Ramana Ch. V..( 2013;). Neurosporene is the major carotenoid accumulated by Rhodobacter viridis JA737. . Biotechnol Lett35:1093–1097. [CrossRef][PubMed]
    [Google Scholar]
  22. Ramaprasad E. V. V ., Sasikala Ch., Ramana Ch. V..( 2015a;). Roseomonas oryzae sp. nov., isolated from paddy rhizosphere soil. . Int J Syst Evol Microbiol65:3535–3540. [CrossRef][PubMed]
    [Google Scholar]
  23. Ramaprasad E. V. V., Sasikala Ch., Ramana..( 2015b;). Flectobacillus rhizosphaerae sp. nov., isolated from the rhizosphere soil of Oryza sativa (L.), and emended description of the genus Flectobacillus. . Int J Syst Evol Microbiol65:3451–3456. [CrossRef][PubMed]
    [Google Scholar]
  24. Ramaprasad E. V. V., Sasikala Ch., Ramana..( 2015c;). Ornithinimicrobium algicola sp. nov., a marine actinobacterium isolated from the green alga of the genus Ulva sp. . Int J Syst Evol Microbiol65:4627–4631. [CrossRef][PubMed]
    [Google Scholar]
  25. Ramaprasad E. V. V., Bharti D., Sasikala C., Ramana..( 2015d;). Zooshikella marina sp. nov. a cycloprodigiosin- and prodigiosin-producing marine bacterium isolated from beach sand. . Int J Syst Evol Microbiol65:4669–4673. [CrossRef]
    [Google Scholar]
  26. Ramaprasad E. V. V., Tushar L., Dave B., Sasikala Ch., Ramana Ch. V..( 2016;). Rhodovulum algae sp. nov., isolated from an algal mat. . Int J Syst Evol Microbiol66:3367–3371.[CrossRef]
    [Google Scholar]
  27. Rhodes M. W., Kator H., McNabb A., Deshayes C., Reyrat J. M., Brown-Elliott B. A., Wallace R., Trott K. A., Parker J. M. et al.( 2005;). Mycobacterium pseudoshottsii sp. nov., a slowly growing chromogenic species isolated from Chesapeake Bay striped bass (Morone saxatilis). . Int J Syst Evol Microbiol55:1139–1147. [CrossRef][PubMed]
    [Google Scholar]
  28. Ringuet H., Akoua-Koffi C., Honore S., Varnerot A., Vincent V., Berche P., Gaillard J. L., Pierre-Audigier C..( 1999;). hsp65 sequencing for identification of rapidly growing mycobacteria. . J Clin Microbiol37:852–857.[PubMed]
    [Google Scholar]
  29. Rosselló-Mora R., Amann R..( 2001;). The species concept for prokaryotes. . FEMS Microbiol Rev25:39–67. [CrossRef][PubMed]
    [Google Scholar]
  30. Schildberger A., Rossmanith E., Eichhorn T., Strassl K., Weber V..( 2013;). Monocytes, peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression patterns following stimulation with lipopolysaccharide. . Mediators Inflamm2013:697972. [CrossRef][PubMed]
    [Google Scholar]
  31. Seldin L., Dubnau D..( 1985;). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing bacillus strains. . Int J Syst Bacteriol35:151–154. [CrossRef]
    [Google Scholar]
  32. Slany M., Svobodova J., Ettlova A., Slana I., Mrlik V., Pavlik I..( 2010;). Mycobacterium arupense among the isolates of non-tuberculous mycobacteria from human, animal, and environmental samples. . Vet Med55:369–376.
    [Google Scholar]
  33. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swings J. et al.( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol52:1043–1047. [CrossRef][PubMed]
    [Google Scholar]
  34. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol30:2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  35. Theus S. A., Cave M. D., Eisenach K. D..( 2004;). Activated THP-1 cells: an attractive model for the assessment of intracellular growth rates of Mycobacterium tuberculosis isolates. . Infect Immun72:1169–1173. [CrossRef][PubMed]
    [Google Scholar]
  36. Venkateswaran K., Moser D. P., Dollhopf M. E., Lies D. P., Saffarini D. A., MacGregor B. J., Ringelberg D. B., White D. C., Nishijima M. et al.( 1999;). Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. . Int J Syst Bacteriol49:705–724. [CrossRef][PubMed]
    [Google Scholar]
  37. Wayne L. G., Colwell R. R., Grimont P. A. D., Krichevsky M. I., Stackebrandt E., Truper H. G., Murray R. G. E., Moore W. E. C., Kandler O. et al.( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Evol Microbiol37:463–464.[CrossRef]
    [Google Scholar]
  38. Zope W..( 1883;). Die Spaltpilze, pp. 1–100. Breslau:: Edward Trewendt;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001386
Loading
/content/journal/ijsem/10.1099/ijsem.0.001386
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error