1887

Abstract

An anaerobic, Gram-stain-positive, spore-forming bacterium, designated DY30321, was isolated from a sample of mixed hydrothermal sulfides collected during cruise DY30 of R/V . Cells of strain DY30321 were rod-shaped with rounded ends, and were not motile. Strain DY30321 grew optimally at pH 8.0, at 30 °C and at a salinity (sea salts) of 30–40 g l. The principal fatty acids of strain DY30321 were C and summed feature 1 (comprising iso H-C/C 3-OH). The predominant polar lipids of strain DY30321 were diphosphatidylglycerol, phosphatidylcholine and phosphatidylethanolamine. No respiratory quinone was detected. The G+C content of the genomic DNA of strain DY30321 was 33.4 mol%. Phylogenetically, strain DY30321 branched within the family , with (misclassified) M1 being its closest phylogenetic relative (94.6 % 16S rRNA gene sequence similarity), followed by (misclassified) DVird3 (92.1 %). These strains showed very low 16S rRNA gene sequence similarity (<84 %) to ATCC 19398, the type species of the genus . On the basis of its phenotypic, phylogenetic and chemotaxonomic characteristics, strain DY30321 (=KCTC 15549=MCCC 1A01532) is considered as the type strain of a novel species of a new genus in the family , for which the name gen. nov., sp. nov. is proposed. gen. nov. is proposed to accommodate as comb. nov. (type species of the genus), and gen. nov. to accommodate as comb. nov. (type species of the genus).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001355
2016-11-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4355.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001355&mimeType=html&fmt=ahah

References

  1. Andreesen J. R., Gottschalk G., Schlegel H. G. 1970; Clostridium formicoaceticum nov. spec. isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch Mikrobiol 72:154–174 [View Article][PubMed]
    [Google Scholar]
  2. Arthi K., Appalaraju B., Parvathi S. 2003; Vancomycin sensitivity and KOH string test as an alternative to gram staining of bacteria. Indian J Med Microbiol 21:121–123[PubMed]
    [Google Scholar]
  3. Braun M., Mayer F., Gottschalk G. 1981; Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch Microbiol 128:288–293 [View Article][PubMed]
    [Google Scholar]
  4. Brisbarre N., Fardeau M. L., Cueff V., Cayol J. L., Barbier G., Cilia V., Ravot G., Thomas P., Garcia J. L. et al. 2003; Clostridium caminithermale sp. nov., a slightly halophilic and moderately thermophilic bacterium isolated from an Atlantic deep-sea hydrothermal chimney. Int J Syst Evol Microbiol 53:1043–1059 [View Article][PubMed]
    [Google Scholar]
  5. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826 [View Article][PubMed]
    [Google Scholar]
  6. Fendrich C., Hippe H., Gottschalk G. 1990; Clostridium halophilium sp. nov. and C. litorale sp. nov., an obligate halophilic and a marine species degrading betaine in the Stickland reaction. Arch Microbiol 154:127–132 [View Article]
    [Google Scholar]
  7. Gerritsen J., Fuentes S., Grievink W., van Niftrik L., Tindall B. J., Timmerman H. M., Rijkers G. T., Smidt H. 2014; Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov. and Asaccharospora gen. nov. Int J Syst Bacteriol 64:1600–1616 [View Article]
    [Google Scholar]
  8. Jyothsna T. S. S., Tushar L., Ch S., Ch.V R. 2016; Paraclostridium Benzoelyticum gen. nov. sp. nov., isolated from marine sediment and reclassification of Costridium bifermentans as Paraclostridium bifermentans comb. nov. proposal of a new genus Paeniclostridium gen. nov. to accommodate clostridium sordellii and clostridium ghonii. Int J Syst Evol Microbiol Epub ahead of print
    [Google Scholar]
  9. Kates M. 1986 Techniques of Lipidology, 2nd ed. rev. pp. 106241–107246 Amsterdam: Elsevier;
    [Google Scholar]
  10. Kämpfer P., Buczolits S., Albrecht A., Busse H. J., Stackebrandt E. 2003; Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov. Int J Syst Evol Microbiol 53:893–896 [View Article][PubMed]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  12. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  13. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–206 [CrossRef]
    [Google Scholar]
  14. Lawson P. A., Rainey F. A. 2016; Proposal to restrict the genus Clostridium Prazmowski to Clostridium butyricum and related species. Int J Syst Bacteriol 66:1009–1016 [View Article]
    [Google Scholar]
  15. Lovley D. R. 2000; Fe (III) and Mn (IV) reduction. Environmental Microbe–Metal Interactions pp 3–30 Edited by Lovley D. R. Washington, DC: ASM Press; [CrossRef]
    [Google Scholar]
  16. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  17. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266 [View Article][PubMed]
    [Google Scholar]
  18. Yarza P., Yilmaz P., Pruesse E., Glöckner F. O., Ludwig W., Schleifer K.-H., Whitman B., Euzeby J., Amann R., Rosselló-Móra R. 2014; Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Micro 12:635–645 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001355
Loading
/content/journal/ijsem/10.1099/ijsem.0.001355
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error