1887

Abstract

Four pink-pigmented, non-motile, Gram-staining-negative and moderately halophilic curved rods, designated strains SSL50, SSL25, SSL97 and SSL4, were isolated from a saltern located in Isla Cristina, Huelva, south-west Spain. Phylogenetic analyses based on 16S rRNA gene sequences showed that they were members of the genus , most closely related to UAH-SP71 (99.3–99.5 % sequence similarity) and M19-40 (96.5–96.7 %). Other related strains were MLHE-1 (95.1–95.3 %), RS91 (95.1–95.2 %) and ATCC 49307 (95.0–95.1 %), all members of the family . The major fatty acids were C and/or C , C and C. The DNA G+C range was 64.0–66.3 mol%. The DNA–DNA hybridization values between strains SSL50, SSL25, SSL97, SSL4 and UAH-SP71 were 37–49 %. The average nucleotide identity (ANIb) values between the genome of strain SSL50 and those of the two other representatives of the genus , UAH-SP71 and M19-40, were 82.4 % and 79.1 %, respectively, supporting the proposal of a novel species of the genus . On the basis of the polyphasic analysis, the four new isolates are considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SSL50 (=CECT 9117=IBRC-M 11076).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001338
2016-10-01
2020-11-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/4218.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001338&mimeType=html&fmt=ahah

References

  1. Cowan S. T., Steel K. J.. 1965; Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  2. De Ley J., Tijtgat R.. 1970; Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie Van Leeuwenhoek36:461–474 [CrossRef][PubMed]
    [Google Scholar]
  3. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  5. Fernández A. B., Ghai R., Martin-Cuadrado A.-B., Sánchez-Porro C., Rodriguez-Valera F., Ventosa A.. 2014a; Prokaryotic taxonomic and metabolic diversity of an intermediate salinity hypersaline habitat assessed by metagenomics. FEMS Microbiol Ecol88:623–635 [CrossRef]
    [Google Scholar]
  6. Fernández A. B., Vera-Gargallo B., Sánchez-Porro C., Ghai R., Papke R. T., Rodriguez-Valera F., Ventosa A.. 2014b; Comparison of prokaryotic community structure from mediterranean and atlantic saltern concentrator ponds by a metagenomic approach. Front Microbiol5:196[CrossRef]
    [Google Scholar]
  7. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biology20:406–416 [CrossRef]
    [Google Scholar]
  8. Ghai R., Pašić L., Fernández A. B., Martin-Cuadrado A. B., Mizuno C. M., McMahon K. D., Papke R. T., Stepanauskas R., Rodriguez-Brito B. et al. 2011; New abundant microbial groups in aquatic hypersaline environments. Sci Rep1:135 [CrossRef][PubMed]
    [Google Scholar]
  9. Imhoff J. F.. 1984; Reassignment of the Genus Ectothiorhodospira Pelsh 1936 to a new family, Ectothiorhodospiraceae fam. nov., and emended description of the Chromatiaceae Bavendamm 1924. Int J Syst Bacteriol34:338–339 [CrossRef]
    [Google Scholar]
  10. Johnson J. L.. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology , pp.655–681 Edited by Gerhardh P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16s rRNA gene sequence database with phylotypes that represent uncultured species. J Syst Evol Microbiol62:716–721 [CrossRef]
    [Google Scholar]
  12. Konstantinidis K. T., Tiedje J. M.. 2005; Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A102:2567–2572 [CrossRef][PubMed]
    [Google Scholar]
  13. Koser S. A.. 1923; Utilization of the salts of organic acids by the colon-aerogenes group. J Bacteriol8:493–520[PubMed]
    [Google Scholar]
  14. León M. J., Fernández A. B., Ghai R., Sánchez-Porro C., Rodriguez-Valera F., Ventosa A.. 2014; From metagenomics to pure culture: isolation and characterization of the moderately halophilic bacterium Spiribacter salinus gen. nov., sp. nov. App Environ Microbiol80:3850–3857 [CrossRef]
    [Google Scholar]
  15. León M. J., Rodríguez-Olmos A., Sánchez-Porro C., López-Pérez M., Rodríguez-Valera F., Soliveri J., Ventosa A., Copa-Patiño J. L.. 2015; Spiribacter curvatus sp. nov., a new moderately halophilic bacterium from Santa Pola saltern in Spain. Int J Syst Evol Microbiol65:4638–4643[CrossRef]
    [Google Scholar]
  16. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar A., Buchner A., Lai T., Steppi S. et al. 2004; ARB: a software environment for sequence data. Nucleic Acids Res32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  17. López-Pérez M., Ghai R., Leon M. J., Rodríguez-Olmos Á., Copa-Patiño J. L., Soliveri J., Sanchez-Porro C., Ventosa A., Rodriguez-Valera F.. 2013; Genomes of ‘Spiribacter’, a streamlined, successful halophilic bacterium. BMC Genomics14:787 [CrossRef][PubMed]
    [Google Scholar]
  18. Marmur J., Doty P.. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  19. MIDI 2008; Sherlock Microbial Identification System Operating Manual, Version 6.1 Newark, DE: MIDI Inc;
    [Google Scholar]
  20. Oren A., Garrity G. M.. 2014; Validation List no. 159. List of new names and new combinations previously effectively, but not validly, published. Intl J Syst Evol Microbiol64:2927–2929 [CrossRef]
    [Google Scholar]
  21. Owen R. J., Hill L. R.. 1979; The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists, 2nd edn. pp.217–296 Edited by Skinner F. A., Lovelock D. W.. London: Academic Press;
    [Google Scholar]
  22. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol and Evol4:406–425
    [Google Scholar]
  23. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc;
  24. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849 [CrossRef]
    [Google Scholar]
  25. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swings J. et al. 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol52:1043–1047 [CrossRef][PubMed]
    [Google Scholar]
  26. Sánchez-Porro C., de la Haba R. R., Soto-Ramírez N., Márquez M. C., Montalvo-Rodríguez R., Ventosa A.. 2009; Description of Kushneria aurantia gen. nov., sp. nov., a novel member of the family Halomonadaceae, and a proposal for reclassification of Halomonas marisflavi as Kushneria marisflavi comb. nov., of Halomonas indalinina as Kushneria indalinina comb. nov. and of Halomonas avicenniae as Kushneria avicenniae comb. nov. Int J Syst Evol Microbiol59:397–405 [CrossRef][PubMed]
    [Google Scholar]
  27. Ventosa A., Fernández A. B., León M. J., Sánchez-Porro C., Rodriguez-Valera F.. 2014; The Santa Pola saltern as a model for studying the microbiota of hypersaline environments. Extremophiles18:811–824 [CrossRef][PubMed]
    [Google Scholar]
  28. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A.. 1982; Numerical taxonomy of moderately halophilic gram-negative rods. J Gen Microbiol128:1959–1968
    [Google Scholar]
  29. Versalovic J., Schneider M., de Bruijn F. J., Lupski J. R.. 1994; Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol5:25–40
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001338
Loading
/content/journal/ijsem/10.1099/ijsem.0.001338
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error