1887

Abstract

Strain PB-6250, isolated from soil in Japan, was first identified in 1992. In contrast to its original taxonomic classification, its 16S rRNA gene sequence showed the highest similarity (99.2 %) to the sequence of DSM 2043, with DSM 2044 being the next most closely related species (98.7 %) with a validly published name. Chemotaxonomic data (fatty acid profile, quinone and polar lipid composition) and the G+C content of strain PB-6250 were compared with those of the closely related type strains LMG 8762, LMG 8760, DSM 19286 and LMG 8763; this supported the affiliation of strain PB-6250 to the genus . Phylogenetic analyses, DNA−DNA-hybridization data, biochemical and physiological characteristics strongly supported the genotypic and phenotypic differentiation of strain PB-6250 from species of with validly published names. Strain PB-6250, therefore represents a novel species, for which the name sp. nov. is proposed. The type strain is PB-6250 (=LMG 28994=DSM 102073).

Keyword(s): Lysobacter and Plusbacin
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001329
2016-10-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/4162.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001329&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  2. Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., Wheeler D. L.. 2004; GenBank: update. Nucleic Acids Res32:D23–D26 [CrossRef][PubMed]
    [Google Scholar]
  3. Christensen P., Cook F. D.. 1978; Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol28:367–393 [CrossRef]
    [Google Scholar]
  4. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J.. 2002; Re-examination of the genus Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol52:1551–1558
    [Google Scholar]
  5. Ezaki T., Hashimoto T., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridisation in microdilution wells as an alternative to membrane filter hybridisation in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  7. Goris J., Suzuki K., Vos P. D., Nakase T., Kersters K.. 1998; Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol44:1148–1153 [CrossRef]
    [Google Scholar]
  8. Lagesen K., Hallin P., Rødland E. A., Staerfeldt H. H., Rognes T., Ussery D. W.. 2007; RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  9. Lee J. W., Im W. T., Kim M. K., Yang D. C.. 2006; Lysobacter koreensis sp. nov., isolated from a ginseng field. Int J Syst Evol Microbiol56:231–235 [CrossRef][PubMed]
    [Google Scholar]
  10. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  11. Palleroni N. J.. 1984; Gram-negative aerobic rods and cocci. Family I. In Bergey’s Manual of Systematic Bacteriology , pp.140–219Edited by Krieg N. R., Holt J. G.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  12. Palleroni N. J.. 1993; Pseudomonas classification. Antonie Van Leeuwenhoek64:231–251 [CrossRef]
    [Google Scholar]
  13. Palleroni N. J.. 2003; Prokaryote taxonomy of the 20th century and the impact of studies on the genus Pseudomonas: a personal view. Microbiology149:1–7 [CrossRef][PubMed]
    [Google Scholar]
  14. Park J. H., Kim R., Aslam Z., Jeon C. O., Chung Y. R.. 2008; Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int J Syst Evol Microbiol58:387–392 [CrossRef][PubMed]
    [Google Scholar]
  15. Romanenko L. A., Uchino M., Tanaka N., Frolova G. M., Mikhailov V. V.. 2008; Lysobacter spongiicola sp. nov., isolated from a deep-sea sponge. Int J Syst Evol Microbiol58:370–374 [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  17. Shoji J. I., Hindoo H., Katayama T., Matsumoto K., Tanimoto T., Hattori T., Higashiyama I., Miwa H., Motokawa K., Yoshida T.. 1992a; Isolation and characterization of new peptide antibiotics, plusbacins A1-A4 and B1-B4. J Antibiot45:817–823 [CrossRef]
    [Google Scholar]
  18. Shoji J. I., Hindoo H., Katayama T., Nakagawa Y., Ikenishi Y., Iwatani K., Yoshida T.. 1992b; Structures of new peptide antibiotics, plusbacins A1-A4 and B1-B4. J Antibiot45:824–831 [CrossRef]
    [Google Scholar]
  19. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849 [CrossRef]
    [Google Scholar]
  20. Stackebrandt E., Ebers J.. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today33:152–155
    [Google Scholar]
  21. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  22. Wang Y., Dai J., Zhang L., Luo X., Li Y., Chen G., Tang Y., Meng Y., Fang C.. 2009; Lysobacter ximonensis sp. nov., isolated from soil. Int J Syst Bacteriol59:786–789 [CrossRef]
    [Google Scholar]
  23. Wang G. L., Wang L., Chen H. H., Shen B., Li S. P., Jiang J. D.. 2011; Lysobacter ruishenii sp. nov., a chlorothalonil-degrading bacterium isolated from a long-term chlorothalonil-contaminated soil. Int J Syst Evol Microbiol61:674–679 [CrossRef][PubMed]
    [Google Scholar]
  24. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A., Kandler O., Krichevsky M., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464[CrossRef]
    [Google Scholar]
  25. Wei D. Q., Yu T. T., Yao J. C., Zhou E. M., Song Z. Q., Yin Y. R., Ming H., Tang S. K., Li W. J.. 2012; Lysobacter thermophilus sp. nov., isolated from a geothermal soil sample in Tengchong, south-west China. Antonie Van Leeuwenhoek 102:643–651 [CrossRef][PubMed]
    [Google Scholar]
  26. Wilson K.. 1987; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp2.4.1–2.4.5 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. New York, NY: Green Publishing & Wiley-Interscience;
    [Google Scholar]
  27. Yokota A., Akagawa-Matsushita M., Hiraishi A., Katayama Y., Urakami T., Yamasato K.. 1992; Distribution of quinone systems in microorganisms: gram-negative eubacteria. Bull Jpn Fed Cult Coll8:136–171
    [Google Scholar]
  28. Zhang L., Bai J., Wang Y., Wu G. L., Dai J., Fang C. X., Wu J. L.. 2011; Lysobacter korlensis sp. nov. Lysobacter bugurensis and sp. nov., isolated from soil. Int J Syst Evol Microbiol61:2259–2265[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001329
Loading
/content/journal/ijsem/10.1099/ijsem.0.001329
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error