1887

Abstract

An orange-coloured, aerobic, motile, short-rod-shaped bacterial strain, designated EGI 6500337, was isolated from the surface-sterilized root of a halophyte, Anabasis elatior (C. A. Mey.) Schischk, collected from Urumqi, Xinjiang province, north-west China. Growth occurred at 5–35 °C (optimum 30 °C), at pH 6.0–9.0 (optimum pH 7.0) and in the presence of 0–6 % (w/v) NaCl (optimum 0–1 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain EGI 6500337 formed a distinct lineage in the cluster that comprised the genera Aurantimonas and Aureimonas in the family Aurantimonadaceae . The 16S rRNA gene sequence of strain EGI 6500337 shared highest similarity with those of Aurantimonas coralicida DSM 14790 (97.15 %) and Aurantimonas manganoxydans DSM 21871 (97.15 %). Strain EGI 6500337 contained Q-10 as the dominant isoprenoid quinone. The major cellular fatty acids were C18 : 1 ω7c and C19 : 0 ω8c cyclo. The polar lipid profile of strain EGI 6500337 contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and phosphatidylethanolamine as major components, similarly to members of the genus Aurantimonas . The DNA G+C content of strain EGI 6500337 was 66.8 mol%. The level of DNA–DNA relatedness between strain EGI 6500337 and Aurantimonas coralicida DSM 14790 was 24.7±2.9 %. On the basis of the phylogenetic analysis, chemotaxonomic data and phenotypic characteristics, strain EGI 6500337 represents a novel species of the genus Aurantimonas , for which the name Aurantimonas endophytica sp. nov. is proposed. The type strain is EGI 6500337 (=KCTC 52296=CPCC 100904).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001320
2016-10-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/4112.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001320&mimeType=html&fmt=ahah

References

  1. Anderson C. R., Dick G. J., Chu M. L., Cho J. C., Davis R. E., Bräuer S. L., Tebo B. M..( 2009;). Aurantimonas manganoxydans, sp. nov. and Aurantimonas litoralis, sp. nov.: Mn(II) oxidizing representatives of a globally distributed clade of alpha-Proteobacteria from the order Rhizobiales. . Geomicrobiol J 26: 189–198. [CrossRef] [PubMed]
    [Google Scholar]
  2. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E..( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100: 221–230. [CrossRef] [PubMed]
    [Google Scholar]
  3. Denner E. B., Smith G. W., Busse H. J., Schumann P., Narzt T., Polson S. W., Lubitz W., Richardson L. L..( 2003;). Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. . Int J Syst Evol Microbiol 53: 1115–1122. [CrossRef] [PubMed]
    [Google Scholar]
  4. Felsenstein J..( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  5. Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  6. Fitch W. M..( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20: 406–416. [CrossRef]
    [Google Scholar]
  7. Jurado V., Gonzalez J. M., Laiz L., Saiz-Jimenez C..( 2006;). Aurantimonas altamirensis sp. nov., a member of the order Rhizobiales isolated from Altamira cave. . Int J Syst Evol Microbiol 56: 2583–2585. [CrossRef] [PubMed]
    [Google Scholar]
  8. Kelly K. L..( 1964;). Color-name charts illustrated with centroid colors. . Inter-Society Color Council-National Bureau of Standards. Chicago (Published in US);.
    [Google Scholar]
  9. Kim M. S., Hoa K. T., Baik K. S., Park S. C., Seong C. N..( 2008;). Aurantimonas frigidaquae sp. nov., isolated from a water-cooling system. . Int J Syst Evol Microbiol 58: 1142–1146. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kimura M..( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;.[CrossRef]
    [Google Scholar]
  12. Komagata K., Suzuki K. I.( 1987;). Lipid and cell-wall analysis in bacterial systematics. . In Methods in Microbiology. Edited by Colwell R. R., Grigorova R.. Orlando, Florida:: Academic Press;.
    [Google Scholar]
  13. Kroppenstedt R. M..( 1982;). Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded Ion exchanger as stationary phases. . J Liq Chromatogr 5: 2359–2367. [CrossRef]
    [Google Scholar]
  14. Lane D. J..( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematic, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. Chichester:: Wiley;.
    [Google Scholar]
  15. Lin S. Y., Hameed A., Liu Y., Hsu Y. H., Lai W. A., Shen F. T., Young L. S., Tsai C. F., Young C. C..( 2013;). Aureimonas ferruginea sp. nov. and Aureimonas rubiginis sp. nov., two siderophore-producing bacteria isolated from rusty iron plates. . Int J Syst Evol Microbiol 63: 2430–2435. [CrossRef] [PubMed]
    [Google Scholar]
  16. Madhaiyan M., Hu C. J., Jegan Roy J., Kim S. J., Weon H. Y., Kwon S. W., Ji L..( 2013;). Aureimonas jatrophae sp. nov. and Aureimonas phyllosphaerae sp. nov., leaf-associated bacteria isolated from Jatropha curcas L. . Int J Syst Evol Microbiol 63: 1702–1708. [CrossRef] [PubMed]
    [Google Scholar]
  17. Marmur J..( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3: 208–218. [CrossRef]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B..( 1989;). Precise measurement of the G+C content of Deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167. [CrossRef]
    [Google Scholar]
  19. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H..( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2: 233–241. [CrossRef]
    [Google Scholar]
  20. Qin S., Wang H. B., Chen H. H., Zhang Y. Q., Jiang C. L., Xu L. H., Li W. J..( 2008;). Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. . Int J Syst Evol Microbiol 58: 2525–2528. [CrossRef] [PubMed]
    [Google Scholar]
  21. Rathsack K., Reitner J., Stackebrandt E., Tindall B. J..( 2011;). Reclassification of Aurantimonas altamirensis (Jurado, et al., 2006), Aurantimonas ureilytica (Weon, et al., 2007) and Aurantimonas frigidaquae (Kim, et al., 2008) as members of a new genus, Aureimonas gen. nov., as Aureimonas altamirensis gen. nov., comb nov., Aureimonas ureilytica comb. nov. and Aureimonas frigidaquae comb. nov., and emended descriptions of the genera Aurantimonas and Fulvimarina. . Int J Syst Evol Microbiol 61: 2722–2728.[CrossRef]
    [Google Scholar]
  22. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  23. Sasser M..( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. . MIDI Technical Note 101. Microbial ID, Inc. Newark:.
    [Google Scholar]
  24. Shirling E. B., Gottlieb D..( 1966;). Methods for characterization of streptomyces species. . Int J Syst Bacteriol 16: 313–340. [CrossRef]
    [Google Scholar]
  25. Skerman V. B. D..( 1967;). A Guide to the Identification of the Genera of Bacteria, , 2nd edn., Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G..( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25: 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I, Moore L. H., Moore W. E. C., Murray R. G. E. et al.( 1987;). International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37: 463–464.[CrossRef]
    [Google Scholar]
  29. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L..( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae' isolated from China. . Int J Syst Evol Microbiol 55: 1149–1153. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001320
Loading
/content/journal/ijsem/10.1099/ijsem.0.001320
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error