1887

Abstract

A novel Gram-stain-negative, aerobic and rod-shaped bacterial strain, designated 65, was isolated from surface-sterilized root tissue of maize, collected from Fangshan District of Beijing, People’s Republic of China, and was subjected to a taxonomic study by using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 65 belonged to the genus Dyadobacter and had highest 16S rRNA gene sequence similarity to Dyadobacter jiangsuensis CGMCC 1.12969 (99.1 %), Dyadobacter beijingensis CGMCC 1.6375 (98.8 %), Dyadobacter fermentans DSM 18053 (98.6 %) and Dyadobacter soli KCTC 22481 (98.6 %). However, the new isolate exhibited relatively low levels of DNA–DNA relatedness with respect to D. jiangsuensis CGMCC 1.12969 (18.2±1.3 %), D. beijingensis CGMCC 1.6375 (14.2±2.0 %), D. fermentans DSM 18053 (14.1±2.0 %) and D. soli KCTC 22481 (13.8±0.6 %). The predominant respiratory quinone was menaquinone-7 (MK-7) and the major cellular fatty acids were summed feature 3 (C16  :  1 ω7c and/or iso-C15 : 0 2-OH), iso-C15  :  0, iso-C17  :  0 3-OH, C16  :  1 ω5c, iso-C15  :  0 3-OH, C16  :  0 3-OH and C16 : 0. The polar lipid profile of strain 65 revealed the presence of phosphatidylethanolamine, four aminolipids and two unidentified phospholipids. The DNA G+C content was 46.6 mol%. The results of physiological and biochemical tests and the differences in the fatty acid profiles allowed the clear phenotypic differentiation of strain 65 from closely related species of the genus Dyadobacter . Strain 65 thus represents a novel species within the genus Dyadobacter , for which the name Dyadobacter endophyticus sp. nov. is proposed. The type strain is 65 (=CGMCC 1.15288=DSM 100786).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001304
2016-10-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/4022.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001304&mimeType=html&fmt=ahah

References

  1. Baik K. S., Kim M. S., Kim E. M., Kim H. R., Seong C. N..( 2007;). Dyadobacter koreensis sp. nov., isolated from fresh water. . Int J Syst Evol Microbiol 57: 1227–1231. [CrossRef] [PubMed]
    [Google Scholar]
  2. Breznak J. A., Costilow R. N..( 2007;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, , 3rd edn. , pp. 309–329. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  3. Chaturvedi P., Reddy G. S., Shivaji S..( 2005;). Dyadobacter hamtensis sp. nov., from Hamta glacier, located in the Himalayas, India. . Int J Syst Evol Microbiol 55: 2113–2117. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chelius M. K., Triplett E. W..( 2000;). Dyadobacter fermentans gen. nov., sp. nov., a novel gram-negative bacterium isolated from surface-sterilized Zea mays stems. . Int J Syst Evol Microbiol 50: 751–758. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chen L., Jiang F., Xiao M., Dai J., Kan W., Fang C., Peng F..( 2013;). Dyadobacter arcticus sp. nov., isolated from Arctic soil. . Int J Syst Evol Microbiol 63: 1616–1620. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chun J., Kang J. Y., Joung Y., Kim H., Joh K., Jahng K. Y..( 2013;). Dyadobacter jejuensis sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 63: 1788–1792. [CrossRef] [PubMed]
    [Google Scholar]
  7. Collins M., Jones D..( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptido- glycans based on 2,4-diaminobutyric acid. . J Appl Microbiol 48: 459–470.
    [Google Scholar]
  8. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E..( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100: 221–230. [CrossRef] [PubMed]
    [Google Scholar]
  9. De Ley J..( 1970;). Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. . J Bacteriol 101: 738–754.[PubMed]
    [Google Scholar]
  10. Delory G. E., King E. J..( 1945;). A sodium carbonate-bicarbonate buffer for alkaline phosphatases. . Biochem J 39: 245. [CrossRef] [PubMed]
    [Google Scholar]
  11. Dong Z., Guo X., Zhang X., Qiu F., Sun L., Gong H., Zhang F..( 2007;). Dyadobacter beijingensis sp. nov., isolated from the rhizosphere of turf grasses in China. . Int J Syst Evol Microbiol 57: 862–865. [CrossRef] [PubMed]
    [Google Scholar]
  12. Felsenstein J..( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gao J. L., Lv F. Y., Wang X. M., Li J. W., Wu Q. Y., Sun J. G..( 2015;). Flavobacterium endophyticum sp. nov., a nifH gene-harbouring endophytic bacterium isolated from maize root. . Int J Syst Evol Microbiol 65: 3900–3904. [CrossRef]
    [Google Scholar]
  14. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  15. Lane D. J..( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematic , pp. 115–175. Edited by Stackerandt E., Goodfellow M.. Chichester, England:: John Willey and Sons Ltd;.
    [Google Scholar]
  16. Lee M., Woo S. G., Park J., Yoo S. A..( 2010;). Dyadobacter soli sp. nov., a starch-degrading bacterium isolated from farm soil. . Int J Syst Evol Microbiol 60: 2577–2582. [CrossRef] [PubMed]
    [Google Scholar]
  17. Liu Q. M., Im W. T., Lee M., Yang D. C., Lee S. T..( 2006;). Dyadobacter ginsengisoli sp. nov., isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 56: 1939–1944. [CrossRef] [PubMed]
    [Google Scholar]
  18. Marmur J..( 1961;). A procedure for the isolation of DNA from micro-organism. . J Mol Biol 3: 208–218.[CrossRef]
    [Google Scholar]
  19. Marmur J., Doty P..( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5: 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  20. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H..( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2: 233–241. [CrossRef]
    [Google Scholar]
  21. Reddy G. S., Garcia-Pichel F..( 2005;). Dyadobacter crusticola sp. nov., from biological soil crusts in the Colorado Plateau, USA, and an emended description of the genus Dyadobacter Chelius and Triplett 2000. . Int J Syst Evol Microbiol 55: 1295–1299. [CrossRef] [PubMed]
    [Google Scholar]
  22. Rzhetsky A., Nei M..( 1992;). Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. . J Mol Evol 35: 367–375. [CrossRef] [PubMed]
    [Google Scholar]
  23. Rzhetsky A., Nei M..( 1993;). Theoretical foundation of the minimum-evolution method of phylogenetic inference. . Mol Biol Evol 10: 1073–1095.[PubMed]
    [Google Scholar]
  24. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  25. Sasser M..( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  26. Shen L., Liu Y., Yao T., Wang N., Xu B., Jiao N., Liu H., Zhou Y., Liu X., Wang Y..( 2013;). Dyadobacter tibetensis sp. nov., isolated from glacial ice core. . Int J Syst Evol Microbiol 63: 3636–3639. [CrossRef] [PubMed]
    [Google Scholar]
  27. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729.[CrossRef]
    [Google Scholar]
  28. Tang Y., Dai J., Zhang L., Mo Z., Wang Y., Li Y., Ji S., Fang C., Zheng C..( 2009;). Dyadobacter alkalitolerans sp. nov., isolated from desert sand. . Int J Syst Evol Microbiol 59: 60–64. [CrossRef] [PubMed]
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G..( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25: 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  30. Tian M., Zhang R. G., Han L., Zhao X. M., Lv J..( 2015;). Dyadobacter sediminis sp. nov., isolated from a subterranean sediment sample. . Int J Syst Evol Microbiol 65: 827–832. [CrossRef] [PubMed]
    [Google Scholar]
  31. Wang L., Chen L., Ling Q., Li C. C., Tao Y., Wang M..( 2015;). Dyadobacter jiangsuensis sp. nov., a methyl red degrading bacterium isolated from a dye-manufacturing factory. . Int J Syst Evol Microbiol 65: 1138–1143. [CrossRef] [PubMed]
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al.( 1987;). International committee on systematic bacteriology. report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37: 463–464.[CrossRef]
    [Google Scholar]
  33. Zhang D. C., Liu H. C., Xin Y. H., Zhou Y. G., Schinner F., Margesin R..( 2010;). Dyadobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from soil. . Int J Syst Evol Microbiol 60: 1640–1643. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001304
Loading
/content/journal/ijsem/10.1099/ijsem.0.001304
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error