1887

Abstract

A novel sulfate-reducing bacterium, strain S606, was isolated from a sulfide sample collected at a depth of 2764 m from a deep-sea vent chimney wall in the Indian Ocean. Phylogenetic 16S rRNA gene sequence analyses placed strain S606 within the genus Thermodesulfatator , with highest sequence similarity of 98.2 % to Thermodesulfatator indicus DSM 15286, followed by Thermodesulfatator atlanticus AT1325 (97.4 %). The average nucleotide identity (ANI) values between S606 and the two other type strains (T. indicus DSM 15286 and T. atlanticus AT1325) were 79.2 % and 71.5 %, respectively. The digital DNA–DNA hybridization estimate values between S606 and these two type strains were 22.7±2.4 % and 18.1±2.3 %, respectively. Cells were Gram-stain-negative, anaerobic, motile rods (1–1.8×0.5–0.7 µm). The novel isolate grew at NaCl concentrations ranging from 1.5 to 4.5 % (optimum 2.5–3 %), from pH 5.5 to 8 (optimum 6.5–7.0) and at temperatures between 50 and 80 °C (optimum 65–70 °C). S606 grew chemolithoautotrophically in an H2/CO2 atmosphere (80 : 20, v/v; 200 kPa), used sulfate as a terminal electron acceptor, but not sulfur, sulfite nor thiosulfate. The predominant fatty acids were C16 :  0 (24.2 %), summed feature 8 (C18 : 1ω6c and/or C18 : 1 ω7c, 26.3 %), C18 :  0 (22.2 %) and C18 : 1ω9c (9.2 %). The DNA G+C content of the chromosomal DNA was 43.1 mol%. The combined genotypic, chemotaxonomic and phenotypic traits show that S606 should be described as representing a novel species of the genus Thermodesulfatator , for which the name Thermodesulfatator autotrophicus sp. nov. is proposed. The type strain is S606 (=DSM 101864=MCCC 1A01871).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001297
2016-10-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/3978.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001297&mimeType=html&fmt=ahah

References

  1. Alain K., Rolland S., Crassous P., Lesongeur F., Zbinden M., le Gall C., Godfroy A., Page A., Juniper S. K. et al.( 2003;). Desulfurobacterium crinifex sp. nov., a novel thermophilic, pinkish-streamer forming, chemolithoautotrophic bacterium isolated from a Juan de Fuca Ridge hydrothermal vent and amendment of the genus Desulfurobacterium. . Extremophiles 7: 361–370. [CrossRef] [PubMed]
    [Google Scholar]
  2. Alain K., Postec A., Grinsard E., Lesongeur F., Prieur D., Godfroy A..( 2010;). Thermodesulfatator atlanticus sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. . Int J Syst Evol Microbiol 60: 33–38. [CrossRef] [PubMed]
    [Google Scholar]
  3. Anderson I., Saunders E., Lapidus A., Nolan M., Lucas S., Tice H., Del Rio T. G., Cheng J. F., Han C. et al.( 2012;). Complete genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812T). . Stand Genomic Sci 6: 155–164. [CrossRef] [PubMed]
    [Google Scholar]
  4. Auch A. F., Klenk H. P., Göker M..( 2010a;). Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. . Stand Genomic Sci 2: 142–148. [CrossRef]
    [Google Scholar]
  5. Auch A. F., von Jan M., Klenk H. P., Göker M..( 2010b;). Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. . Stand Genomic Sci 2: 117–134. [CrossRef]
    [Google Scholar]
  6. Cord-Ruwisch R..( 1985;). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. . J Microbiol Meth 4: 33–36. [CrossRef]
    [Google Scholar]
  7. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M..( 2007;). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57: 81–91. [CrossRef] [PubMed]
    [Google Scholar]
  8. Heidelberg J. F., Seshadri R., Haveman S. A., Hemme C. L., Paulsen I. T., Kolonay J. F., Eisen J. A., Ward N., Methe B. et al.( 2004;). The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. . Nat Biotechnol 22: 554–559. [CrossRef] [PubMed]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  10. Luo R., Liu B., Xie Y., Li Z., Huang W., Yuan J., He G., Chen Y., Pan Q. et al.( 2012;). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. . Gigascience 1: 18. [CrossRef] [PubMed]
    [Google Scholar]
  11. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M..( 2013;). Genome sequence-based species delimitation with confidence intervals and improved distance functions. . BMC Bioinformatics 14: 60. [CrossRef] [PubMed]
    [Google Scholar]
  12. Moussard H., L'Haridon S., Tindall B. J., Banta A., Schumann P., Stackebrandt E., Reysenbach A. L., Jeanthon C..( 2004;). Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. . Int J Syst Evol Microbiol 54: 227–233. [CrossRef] [PubMed]
    [Google Scholar]
  13. Richter M., Rosselló-Móra R..( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106: 19126–19131. [CrossRef] [PubMed]
    [Google Scholar]
  14. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  15. Sasser M..( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Tecnical Note 101. Newark, DE:: MIDI;.
    [Google Scholar]
  16. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  17. Wayne L. G., Stackebrandt E., Kandler O., Colwell R. R., Krichevsky M. I., Truper H. G., Murray R. G. E., Moore W. E. C., Grimont P. A. D. et al.( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37: 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001297
Loading
/content/journal/ijsem/10.1099/ijsem.0.001297
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error