1887

Abstract

A taxonomic investigation was performed on a Gram-stain-positive coccus, designated strain BSN307, isolated from gaur (Indian bison, ) dung based on phenotypic and molecular approaches. Based on the biochemical tests, cellular morphology and 16S rRNA gene sequence similarity, this strain was found to be a member of the genus and closely related to ATCC 49156 (99.6 % 16S rRNA gene sequence similarity) and 516 (99.0 %). However, DNA–DNA hybridization studies showed that the level of relatedness between strain BSN307 and ATCC 49156 was 75.8 %, suggesting that it represented a novel subspecies of The inability to grow in brain heart infusion (BHI) medium at pH 9.6, in tryptic soy agar (TSA) with 4 % (w/v) NaCl and at 42 °C (MRS agar) clearly differentiated BSN307 from ATCC 49156. Rep-PCR fingerprint patterns, substantial differences in summed feature 8 (C 7/C 6), C cyclo 8 and C also differentiated strain BSN307 from the reference strain of . Moreover, analysis of the housekeeping genes and revealed sequence similarities that were at the limit for species differentiation (92.2 and 97.8 %, respectively). Combined genotypic and phenotypic data indicate that strain BSN307 represents a subspecies of for which the name subsp. subsp. nov. is proposed. The type strain is BSN307 (=DSM 100577 =MCC 2824=KCTC 21083).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001268
2016-10-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/3805.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001268&mimeType=html&fmt=ahah

References

  1. Cai Y., Yang J., Pang H., Kitahara M.. 2011; Lactococcus fujiensis sp. nov., a lactic acid bacterium isolated from vegetable matter. Int J Syst Evol Microbiol61:1590–1594 [CrossRef][PubMed]
    [Google Scholar]
  2. Chen Y. S., Otoguro M., Lin Y. H., Pan S. F., Ji S. H., Yu C. R., Liou M. S., Chang Y. C., Wu H. C., Yanagida F.. 2014; Lactococcus formosensis sp. nov., a lactic acid bacterium isolated from yan-tsai-shin (fermented broccoli stems). Int J Syst Evol Microbiol64:146–151 [CrossRef][PubMed]
    [Google Scholar]
  3. Cho S. L., Nam S. W., Yoon J. H., Lee J. S., Sukhoom A., Kim W.. 2008; Lactococcus chungangensis sp. nov., a lactic acid bacterium isolated from activated sludge foam. Int J Syst Evol Microbiol58:1844–1849 [CrossRef][PubMed]
    [Google Scholar]
  4. Collins M. D., Farrow J. A., Phillips B. A., Kandler O.. 1983; Streptococcus garvieae sp. nov. and Streptococcus plantarum sp. nov. J Gen Microbiol129:3427–3431 [CrossRef][PubMed]
    [Google Scholar]
  5. Edgar R. C.. 2004; MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  6. Eldar A., Goria M., Ghittino C., Zlotkin A., Bercovier H.. 1999; Biodiversity of Lactococcus garvieae strains isolated from fish in Europe, Asia, and Australia. Appl Environ Microbiol65:1005–1008[PubMed]
    [Google Scholar]
  7. Fernandez E., Alegria A., Delgado S., Mayo B.. 2010; Phenotypic, genetic and technological characterization of Lactococcus garvieae strains isolated from a raw milk cheese. Int Dairy J20:142–148[CrossRef]
    [Google Scholar]
  8. Gillis M., De Ley J., De Cleene M.. 1970; The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem12:143–153 [CrossRef][PubMed]
    [Google Scholar]
  9. Gonzalez J. M., Saiz-Jimenez C.. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol4:770–773[PubMed][CrossRef]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  11. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  12. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A.. 1992; International Code of Nomenclature of Bacteria (1990 Revision). Bacteriological Code Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Ley J. D., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  14. Loveland-Curtze J., Miteva V. I., Brenchley J. E.. 2011; Evaluation of a new fluorimetric DNA-DNA hybridization method. Can J Microbiol57:250–255 [CrossRef][PubMed]
    [Google Scholar]
  15. Meier-Kolthoff J. P., Hahnke R. L., Petersen J., Scheuner C., Michael V., Fiebig A., Rohde C., Rohde M., Fartmann B. et al. 2014; Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci9:2 [CrossRef][PubMed]
    [Google Scholar]
  16. Meucci A., Zago M., Rossetti L., Fornasari M. E., Bonvini B., Tidona F., Povolo M., Contarini G., Carminati D., Giraffa G.. 2015; Lactococcus hircilactis sp. nov. and Lactococcus laudensis sp. nov., isolated from milk. Int J Syst Evol Microbiol65:2091–2096 [CrossRef][PubMed]
    [Google Scholar]
  17. Naser S. M., Dawyndt P., Hoste B., Gevers D., Vandemeulebroecke K., Cleenwerck I., Vancanneyt M., Swings J.. 2007; Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol57:2777–2789 [CrossRef][PubMed]
    [Google Scholar]
  18. Pérez T., Balcázar J. L., Peix A., Valverde A., Velázquez E., De Blas I., Ruiz-Zarzuela I.. 2010; Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). Int J Syst Evol Microbiol61:1894–1898 [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  20. Schleifer K. H., Kraus J., Dvorak C., Kilpper-Balz R., Collins M. D., Fischer W.. 1985; Transfer of Streptococcus lactis and related Streptococci to the genus Lactococcus gen. nov. Syst Appl Microbiol6:183–195 [CrossRef]
    [Google Scholar]
  21. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  22. Varsha K. K., Devendra L., Shilpa G., Priya S., Pandey A., Nampoothiri K. M.. 2015; 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int J Food Microbiol211:44–50 [CrossRef][PubMed]
    [Google Scholar]
  23. Varsha K., Priya S., Devendra L., Nampoothiri K.. 2014; Control of spoilage fungi by protective lactic acid bacteria displaying probiotic properties. Appl Biochem Biotechnol1–12
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001268
Loading
/content/journal/ijsem/10.1099/ijsem.0.001268
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error