1887

Abstract

A new aerobic marine bacterium, strain S3431, was isolated from swab samples of an unidentified polychaete near Canal Concepción, Chile. This strain was thought to represent a new taxon within the genus Pseudoalteromonas . Although DNA–DNA reassociation values showed less than 70 % genomic DNA relatedness to established Pseudoalteromonas type strains, it shared 78 % DNA–DNA relatedness with Alteromonas fuliginea DSM 15748 (=KMM 216) (Romanenko et al., 1994). A. fuliginea has later been considered a heterotypic synonym of Pseudoalteromonas citrea (Ivanova et al., 1998). Relatedness between strains S3431, A. fuliginea DSM 15748 and the type strain P. citrea LMG 12323 was therefore studied. Physiological traits and genomic information were shared at a high level by strains S3431 and DSM 15748, but not between these and P. citrea LMG 12323. There was only approximately 20 % DNA–DNA relatedness between P. citrea LMG 12323 and strains S3431 and DSM 15748. Based on the available phylogenetic and phenotypic data, the reclassification of A. fuliginea DSM 15748 (Romanenko et al., 1995) → Pseudoalteromonas citrea (Ivanova et al., 1998) as Pseudoalteromonas fuligineacomb. nov. is proposed, and strain S3431 should be assigned to this new species. The name Pseudoalteromonas fuliginea is proposed with KMM 216 (=DSM 15748=CIP 105339) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001259
2016-09-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3737.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001259&mimeType=html&fmt=ahah

References

  1. Auch A. F., von Jan M., Klenk H. P., Göker M..( 2010;). Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. . Stand Genomic Sci 2,: 117–– 134. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bowman J. P..( 2007;). Bioactive compound synthetic capacity and ecological significance of marine bacterial genus pseudoalteromonas. . Mar Drugs 5: 220–241. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M..( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81: 461–466. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cowan S. T..( 1974;). Cowan and Steel's Manual for the Identification of Medical Bacteria. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A..( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12: 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  6. Egan S., James S., Holmström C., Kjelleberg S..( 2002;). Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicata. . Environ Microbiol 4: 433–442. [CrossRef] [PubMed]
    [Google Scholar]
  7. Gauthier M. J..( 1977;). Alteromonas citrea, a new gram-negative, yellow-pigmented species from seawater. . Int J Syst Evol Microbiol 27: 349–354. [CrossRef]
    [Google Scholar]
  8. Gauthier G., Gauthier M., Christen R..( 1995;). Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. . Int J Syst Bacteriol 45: 755–761. [CrossRef] [PubMed]
    [Google Scholar]
  9. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M..( 2007;). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57: 81–91. [CrossRef] [PubMed]
    [Google Scholar]
  10. Gram L., Melchiorsen J., Bruhn J. B..( 2010;). Antibacterial activity of marine culturable bacteria collected from a global sampling of ocean surface waters and surface swabs of marine organisms. . Mar Biotechnol 12: 439–451. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hugh R., Leifson E..( 1953;). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. . J Bacteriol 66: 24–26.[PubMed]
    [Google Scholar]
  12. Hus V. A. R., Festl H., Schleifer K. H..( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4: 184–192. [CrossRef] [PubMed]
    [Google Scholar]
  13. Ivanova E. P., Kiprianova E. A., Mikhailov V. V., Levanova G. F., Garagulya A. D., Gorshkova N. M., Vysotskii M. V., Nicolau D. V., Yumoto N. et al.( 1998;). Phenotypic diversity of Pseudoalteromonas citrea from different marine habitats and emendation of the description. . Int J Syst Bacteriol 48: 247–256. [CrossRef] [PubMed]
    [Google Scholar]
  14. Östling J., Goodman A. E., Kjelleberg S..( 1991;). Behaviour of IncP-1 plasmids and a miniMu transposon in a marine Vibrio sp.: isolation of starvation inducible lac operon fusions. . FEMS Microbiol Lett 86: 83–93. [CrossRef]
    [Google Scholar]
  15. Romanenko L. A., Lysenko A. M., Mikhailov V. V., Kurika A. V..( 1994;). A new species of brown agar-digesting bacteria of the genus Alteromonas. . Microbiology 63: 613–616.
    [Google Scholar]
  16. Romanenko L. A., Lysenko A. M., Mikhailov V. V., Kurika A. V..( 1995;). A new species of brown agar-digesting bacteria of the genus Alteromonas. . Microbiology 64: 60–62.
    [Google Scholar]
  17. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  18. Vynne N. G., Månsson M., Nielsen K. F., Gram L..( 2011;). Bioactivity, chemical profiling, and 16S rRNA-based phylogeny of Pseudoalteromonas strains collected on a global research cruise. . Mar Biotechnol 13: 1062–1073. [CrossRef] [PubMed]
    [Google Scholar]
  19. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al.( 1987;). Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. . Int J Syst Evol Microbiol 37: 463–464.[CrossRef]
    [Google Scholar]
  20. Weyland H., Rüger H.-J., Schwarz H..( 1970;). Zur Isolierung und Identifizierung mariner Bakterien Ein Beitrag zur Standardisierung und Entwicklung adaequater Methoden. . Veroeff Inst Meeresforsch Bremerhaven 12: 269–296.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001259
Loading
/content/journal/ijsem/10.1099/ijsem.0.001259
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error