1887

Abstract

A taxonomic study was carried out on a Gram-staining-negative bacterium, strain SF-12, isolated from an unidentified starfish living in Sanya, PR China. Cells of SF-12 were non-spore-forming rods, 0.5–0.8 µm wide, 2.2–2.5 µm long and motile by means of flagella. SF-12 was facultatively anaerobic, heterotrophic, oxidase- and catalase-positive. Growth of SF-12 occurred at 15–38 °C (optimum, 30 °C), at pH 6.5–8.5 (optimum, pH 7.0), and in the presence of 2.0–7.0 % (w/v) NaCl (optimum, 3.0–4.0 %). The predominant fatty acids of SF-12 were C18 : 1ω7c and/or C18 : 1ω6c. Ubiquinone 10 was the sole respiratory quinone of SF-12. The major polar lipids of SF-12 were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three unknown aminolipids, and seven unknown phospholipids. The DNA G+C content was 61 mol%. SF-12 showed the highest 16S rRNA gene sequence similarity to Lutimaribacter pacificus W11-2B (96.06 %), followed by Cribrihabitans neustonicus CC-AMHB-3 (96.02 %), Lutimaribacter saemankumensis SMK-117 (96.0 %), Cribrihabitans marinus CZ-AM5 (95.92 %), Lutimaribacter litoralis KU5D5 (95.92 %) and other species of the family Rhodobacteraceae (<95.9 %). However, phylogenetic trees based on 16S rRNA gene sequences showed that SF-12 formed a lineage with members of the genus Lutimaribacter in the trees. On the basis of phenotypic, chemotaxonomic and phylogenetic analyses, SF-12 is considered to represent a novel species of the genus Lutimaribacter , for which the name Lutimaribacter marinistellae sp. nov. is proposed. The type strain is SF-12 (=MCCC 1K01154=KCTC 42911).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001251
2016-09-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3675.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001251&mimeType=html&fmt=ahah

References

  1. Chen Z., Liu Y., Liu L. Z., Zhong Z. P., Liu Z. P., Liu Y..( 2014;). Cribrihabitans marinus gen. nov., sp. nov., isolated from a biological filter in a marine recirculating aquaculture system. . Int J Syst Evol Microbiol 64: 1257–1263. [CrossRef] [PubMed]
    [Google Scholar]
  2. Collins M. D., Jones D..( 1981a;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. . Microbiol Rev 45: 316–354.
    [Google Scholar]
  3. Collins M. D., Jones D..( 1981b;). A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin layer chromatography and high performance liquid chromatography. . J Appl Bacteriol 51: 129–134. [CrossRef]
    [Google Scholar]
  4. Dong X. Z., Cai M. Y..( 2001;). Morphological characteristics. . In Determinative Manual for Routine Bacteriology (English translation), pp. 355–356. Beijing:: Scientific Press;.
    [Google Scholar]
  5. Embley T. M., Wait R..( 1994;). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M., O’Donnell A. G.. Chichester:: Wiley;.
    [Google Scholar]
  6. Felsenstein J..( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  7. Garrity G. M., Bell J. A., Lilburn T..( 2005;). Family I. Rhodobacteraceae fam. nov. . In Bergey’s Mannual of Systematic Bacteriololgy, , 2nd edn.,vol. 2 part C, p. 161. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York:: Springer;.
    [Google Scholar]
  8. Hameed A., Shahina M., Lin S. Y., Lai W. A., Liu Y. C., Hsu Y. H., Young C. C..( 2014;). Cribrihabitans neustonicus sp. nov., isolated from coastal surface seawater, and emended description of the genus Cribrihabitans Chen et al. 2014. . Int J Syst Evol Microbiol 64: 3897–3903. [CrossRef] [PubMed]
    [Google Scholar]
  9. Iwaki H., Yasukawa N., Fujioka M., Takada K., Hasegawa Y..( 2013;). Isolation and characterization of a marine cyclohexylacetate-degrading bacterium Lutimaribacter litoralis sp. nov., and reclassification of Oceanicola pacificus as Lutimaribacter pacificus comb. nov. . Curr Microbiol 66: 588–593. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kämpfer P., Kroppenstedt R. M..( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42: 989–1005. [CrossRef]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  12. Mesbah M., Premachandran U., Whitman W. B..( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167. [CrossRef]
    [Google Scholar]
  13. Rzhetsky A., Nei M..( 1992;). Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. . J Mol Evol 35: 367–375. [CrossRef] [PubMed]
    [Google Scholar]
  14. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  15. Sasser M..( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  16. Shahina M., Hameed A., Lin S. Y., Hsu Y. H., Liu Y. C., Cheng I. C., Lee M. R., Lai W. A., Lee R. J., Young C. C..( 2013;). Sphingomicrobium astaxanthinifaciens sp. nov., an astaxanthin-producing glycolipid-rich bacterium isolated from surface seawater and emended description of the genus Sphingomicrobium. . Int J Syst Evol Microbiol 63: 3415–3422. [CrossRef] [PubMed]
    [Google Scholar]
  17. Shieh W. Y., Chen Y. W., Chaw S. M., Chiu H. H..( 2003;). Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. . Int J Syst Evol Microbiol 53: 479–484. [CrossRef] [PubMed]
    [Google Scholar]
  18. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  19. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P..( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60: 249–266. [CrossRef] [PubMed]
    [Google Scholar]
  20. Yoon J. H., Kang S. J., Lee J. S., Oh T. K..( 2009;). Lutimaribacter saemankumensis gen. nov., sp. nov., isolated from a tidal flat of the Yellow Sea. . Int J Syst Evol Microbiol 59: 48–52. [CrossRef] [PubMed]
    [Google Scholar]
  21. Yuan J., Lai Q., Wang B., Sun F., Liu X., Du Y., Li G., Gu L., Zheng T., Shao Z..( 2009;). Oceanicola pacificus sp. nov., isolated from a deep-sea pyrene-degrading consortium. . Int J Syst Evol Microbiol 59: 1158–1161. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001251
Loading
/content/journal/ijsem/10.1099/ijsem.0.001251
Loading

Data & Media loading...

Supplements

Supplementary File 1

WORD

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error