1887

Abstract

A moderately psychrophilic, aerobic, hydrogen- and sulfur-oxidizing bacterium, designated strain MAS2, was isolated from a tank containing coastal seawater from Tokyo Bay and a block of beef tallow added as organic material. Growth occurred under aerobic chemolithoautotrophic conditions in the presence of molecular hydrogen, thiosulfate, tetrathionate, elemental sulfur or sulfide as the sole energy source and bicarbonate as a carbon source. The isolate represented a Gram-staining-negative rod with a single polar flagellum and grew in artificial seawater medium with thiosulfate at 2–40 °C (optimum 30 °C). The isolate grew in media with thiosulfate at Na concentrations between 30 and 1380 mM (optimum 270 mM). MAS2 possessed C, C and C as the major fatty acids. The G+C content of the genomic DNA was 39.6 mol%. The 16S rRNA gene sequence similarity analysis showed that the isolate represented a member of the genus within the class and was most closely related to JB-A2. On the basis of phenotypic and molecular properties, the isolate represents a novel species of the genus , for which the name sp. nov. is proposed (type strain, MAS2=JCM 30760=DSM 100274).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001250
2016-09-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3688.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001250&mimeType=html&fmt=ahah

References

  1. Aeckersberg F., Rainey F. A., Widdel F. 1998; Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170:361–369 [View Article][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and PSI-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  3. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296[PubMed]
    [Google Scholar]
  4. Brinkhoff T., Muyzer G. 1997; Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp. Appl Environ Microbiol 63:3789–3796[PubMed]
    [Google Scholar]
  5. Brinkhoff T., Muyzer G., Wirsen C. O., Kuever J. 1999a; Thiomicrospira chilensis sp. nov., a mesophilic obligately chemolithoautotrophic sulfur-oxidizing bacterium isolated from a Thioploca mat. Int J Syst Bacteriol 49:875–879 [View Article][PubMed]
    [Google Scholar]
  6. Brinkhoff T., Muyzer G., Wirsen C. O., Kuever J. 1999b; Thiomicrospira kuenenii sp. nov. and Thiomicrospira frisia sp. nov., two mesophilic obligately chemolithoautotrophic sulfur-oxidizing bacteria isolated from an intertidal mud flat. Int J Syst Bacteriol 49:385–392 [View Article][PubMed]
    [Google Scholar]
  7. Brinkhoff T., Sievert S. M., Kuever J., Muyzer G. 1999c; Distribution and diversity of sulfur-oxidizing Thiomicrospira spp. at a shallow-water hydrothermal vent in the Aegean Sea (Milos, Greece). Appl Environ Microbiol 65:3843–3849[PubMed]
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  9. Fogo J. K., Popowsky M. 1949; Spectrophotometric determination of hydrogen sulfide. Methylene blue method. Anal Chem 21:732–734 [CrossRef]
    [Google Scholar]
  10. Jannasch H. W., Wirsen C. O., Nelson D. C., Robertson L. A. 1985; Thiomicrospira crunogena sp. nov., a colorless, sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int J Syst Bacteriol 35:422–424 [View Article]
    [Google Scholar]
  11. Knittel K., Kuever J., Meyerdierks A., Meinke R., Amann R., Brinkhoff T. 2005; Thiomicrospira arctica sp. nov. and Thiomicrospira psychrophila sp. nov., psychrophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacteria isolated from marine Arctic sediments. Int J Syst Evol Microbiol 55:781–786 [View Article][PubMed]
    [Google Scholar]
  12. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. 2004; ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  13. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  14. Nishihara H., Igarashi Y., Kodama T. 1989; Isolation of an obligately chemolithoautotrophic, halophilic and aerobic hydrogen-oxidizing bacterium from marine environment. Arch Microbiol 152:39–43 [View Article]
    [Google Scholar]
  15. Nishihara H., Igarashi Y., Kodama T. 1991; Hydrogenovibrio marinus gen. nov., sp. nov., a marine obligately chemolithoautotrophic hydrogen-oxidizing bacterium. Int J Syst Bacteriol 41:130–133 [View Article]
    [Google Scholar]
  16. Nishihara H., Yaguchi T., Chung S. Y., Suzuki K., Yanagi M., Yamasato K., Kodama T., Igarashi Y. 1998; Phylogenetic position of an obligately chemoautotrophic, marine hydrogen-oxidizing bacterium, Hydrogenovibrio marinus, on the basis of 16S rRNA gene sequences and two form I RuBisCO gene sequences. Arch Microbiol 169:364–368 [View Article][PubMed]
    [Google Scholar]
  17. Oremland R. S., Taylor B. F. 1978; Sulfate reduction and methanogenesis in marine sediments. Geochim Cosmochim Ac 42:209–214 [View Article]
    [Google Scholar]
  18. Porter K. G., Feig Y. S. 1980; The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948 [View Article]
    [Google Scholar]
  19. Scott K. M., Sievert S. M., Abril F. N., Ball L. A., Barrett C. J., Blake R. A., Boller A. J., Chain P. S., Clark J. A. et al. 2006; The genome of deep-sea vent chemolithoautotroph Thiomicrospira crunogena XCL-2. PLoS Biol 4:e383 [View Article][PubMed]
    [Google Scholar]
  20. Shomura Y., Yoon K.-S., Nishihara H., Higuchi Y. 2011; Structural basis for a [4Fe–3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase. Nature 479:253–256 [View Article][PubMed]
    [Google Scholar]
  21. Stackebrandt E., Goebel B. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  22. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swings J. et al. 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [View Article][PubMed]
    [Google Scholar]
  23. Takai K., Horikoshi K. 2000; Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17 [View Article][PubMed]
    [Google Scholar]
  24. Takai K., Inoue A., Horikoshi K. 1999; Thermaerobacter marianensis gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11,000 m deep Mariana Trench. Int J Syst Bacteriol 49:619–628 [View Article][PubMed]
    [Google Scholar]
  25. Takai K., Kobayashi H., Nealson K. H., Horikoshi K. 2003; Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:839–846 [View Article]
    [Google Scholar]
  26. Takai K., Hirayama H., Nakagawa T., Suzuki Y., Nealson K. H., Horikoshi K. 2004; Thiomicrospira thermophila sp. nov., a novel microaerobic, thermotolerant, sulfur-oxidizing chemolithomixotroph isolated from a deep-sea hydrothermal fumarole in the TOTO caldera, Mariana Arc, Western Pacific. Int J Syst Evol Microbiol 54:2325–2333 [View Article][PubMed]
    [Google Scholar]
  27. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  28. Watsuji T., Nakagawa S., Tsuchida S., Toki T., Hirota A., Tsunogai U., Takai K. 2010; Diversity and function of epibiotic microbial communities on the galatheid crab, Shinkaia crosnieri . Microb Environ 25:288–294 [View Article]
    [Google Scholar]
  29. Wayne L. G., Brenner D., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacterial 37:463–464 [View Article]
    [Google Scholar]
  30. Yoon K.-S., Fukuda K., Fujisawa K., Nishihara H. 2011; Purification and characterization of a highly thermostable, oxygen-resistant, respiratory [NiFe]-hydrogenase from a marine, aerobic hydrogen-oxidizing bacterium Hydrogenovibrio marinus . Int J Hydrogen Energy 36:7081–7088 [View Article]
    [Google Scholar]
  31. Zillig W., Holz I., Janekovic D., Klenk H. P., Imsel E., Trent J., Wunderl S., Forjaz V. H., Coutinho R., Ferreira T. 1990; Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001250
Loading
/content/journal/ijsem/10.1099/ijsem.0.001250
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error