1887

Abstract

A novel yellow bacterial strain, designated UCM-28, was isolated from forest soil in Gyeonggi-Do, South Korea. The isolated strain was Gram-stain-negative, aerobic, non-spore-forming, non-motile and rod-shaped, and grew at 10–37 °C, pH 5.5–9 and with 0–1 % NaCl. It could reduce nitrate to nitrite and hydrolyse aesculin. We determined the taxonomic position of strain UCM-28; based on the 16S rRNA gene sequence, the strain belongs to the genus . The bacterium showed the highest similarity to SLH-16 (98.9 %), JM-1 (97.7 %), T3-B9 (97.2 %), DSM 12447 (97.1 %), DSM 12444 (97.1 %) and GIFU 11526 (96.7 %). Phylogenic trees also confirmed that strain UCM-28 is most closely related to SLH-16 and others, and is positioned within the genus . The DNA relatedness of strain UCM-28 with its references was in the range of 20.9–35.2 %. The polar lipid profile revealed diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, phosphatidylcholine, phosphatidylmonomethylethanolamine, six unidentified polar lipids and two unknown glycolipids. The major quinone was ubiquinone Q-10, and the major polyamine was spermidine. The DNA G+C content was 63.5 mol%. The major fatty acids included (>10 %) summed feature 8 (Cω7 and/or Cω6) (46.3 %), summed feature 3 (Cω7 and/or Cω6) (24.9 %) and C 2-OH (11.8 %). Based on the phylogenetic and phenotypic data, strain UCM-28 should be classified within the genus as a representative of a novel species, named sp. nov. The type strain is UCM-28 (=KACC 18571=NBRC 111647).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001242
2016-09-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3642.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001242&mimeType=html&fmt=ahah

References

  1. Balkwill D. L., Drake G. R., Reeves R. H., Fredrickson J. K., White D. C., Ringelberg D. B., Chandler D. P., Romine M. F., Kennedy D. W., Spadoni C. M.. 1997; Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol47:191–201 [CrossRef][PubMed]
    [Google Scholar]
  2. Blümel S., Mark B., Busse H. J., Kämpfer P., Stolz A.. 2001; Pigmentiphaga kullae gen. nov., sp. nov., a novel member of the family Alcaligenaceae with the ability to decolorize azo dyes aerobically. Int J Syst Evol Microbiol51:1867–1871 [CrossRef][PubMed]
    [Google Scholar]
  3. Busse H. J., Bunka S., Hensel A., Lubitz W.. 1997; Discrimination of members of the family pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol47:698–708 [CrossRef]
    [Google Scholar]
  4. Chen Q., Zhang J., Wang C. H., Jiang J., Kwon S. W., Sun L. N., Shen W. B., He J.. 2014; Novosphingobium chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from activated sludge. Int J Syst Evol Microbiol64:2573–2578 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen W. M., Chen J. C., Huang C. W., Young C. C., Sheu S. Y.. 2016; Novosphingobium colocasiae sp. nov., isolated from a taro field. Int J Syst Evol Microbiol66:673–679 [CrossRef][PubMed]
    [Google Scholar]
  6. Collins M. D., Goodfellow M.. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol41:81–95
    [Google Scholar]
  7. da Costa M. S., Albuquerque L., Nobre M. F., Wait R.. 2011; The extraction and identification of respiratory lipoquinones of Prokaryotes and their use in taxonomy. In Methods in Microbiology, 1st edn.vol. 38 pp.197–206 Edited by Rainey F., Oren A.. Oxford, UK: Academic Press;
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  9. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  10. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  11. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  12. Frank J. A., Reich C. I., Sharma S., Weisbaum J. S., Wilson B. A., Olsen G. J.. 2008; Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol74:2461–2470 [CrossRef][PubMed]
    [Google Scholar]
  13. Gao S., Zhang Y., Jiang N., Luo L., Li Q. X., Li J.. 2015; Novosphingobium fluoreni sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol65:1409–1414 [CrossRef][PubMed]
    [Google Scholar]
  14. Glaeser S. P., Kämpfer P., Busse H. J., Langer S., Glaeser J.. 2009; Novosphingobium acidiphilum sp. nov., an acidophilic salt-sensitive bacterium isolated from the humic acid-rich Lake Grosse Fuchskuhle. Int J Syst Evol Microbiol59:323–330 [CrossRef][PubMed]
    [Google Scholar]
  15. Glaeser S. P., Bolte K., Busse H.-J., Kämpfer P., Grossart H. P., Glaeser J.. 2013; Novosphingobium aquaticum sp. nov., isolated from the humic-matter-rich bog lake Grosse Fuchskuhle. Int J Syst Evol Microbiol63:2630–2636 [CrossRef][PubMed]
    [Google Scholar]
  16. Gupta S. K., Lal D., Lal R.. 2009; Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol59:156–161 [CrossRef][PubMed]
    [Google Scholar]
  17. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  18. Huo Y. Y., You H., Li Z. Y., Wang C. S., Xu X. W.. 2015; Novosphingobium marinum sp. nov., isolated from seawater. Int J Syst Evol Microbiol65:676–680 [CrossRef][PubMed]
    [Google Scholar]
  19. Jacin H., Mishkin A. R.. 1965; Separation of carbonhydrates on borate-impregnated silica gel G plates. J Chromatogr18:170–173 [CrossRef]
    [Google Scholar]
  20. Kämpfer P., Martin K., McInroy J. A., Glaeser S. P.. 2015a; Proposal of Novosphingobium rhizosphaerae sp. nov., isolated from the rhizosphere. Int J Syst Evol Microbiol65:195–200 [CrossRef]
    [Google Scholar]
  21. Kämpfer P., Martin K., McInroy J. A., Glaeser S. P.. 2015b; Novosphingobium gossypii sp. nov., isolated from Gossypium hirsutum. Int J Syst Evol Microbiol65:2831–2837 [CrossRef]
    [Google Scholar]
  22. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  23. Kimura M.. 1983; The Neutral Theory of Molecular Evolution Cambridge, UK: Cambridge University Press;[CrossRef]
    [Google Scholar]
  24. Krieg N. R., Padgett P. J.. 2011; Phenotypic and physiological characterization methods. In Methods in Microbiology, 1st edn.vol. 38 pp15–60 Edited by Rainey F., Oren A.. Oxford UK: Academic Press;
    [Google Scholar]
  25. Leifson E.. 1962; The bacterial flora of distilled and stored water. III. new species of the genera corynebacterium, flavobacterium, spirillum and pseudomonas. Int Bull Bacteriol Nom Tax12:161–170 [CrossRef]
    [Google Scholar]
  26. Lin S. Y., Hameed A., Liu Y. C., Hsu Y. H., Lai W. A., Huang H., Young C. C.. 2014; Novosphingobium arabidopsis sp. nov., a DDT-resistant bacterium isolated from the rhizosphere of Arabidopsis thaliana. Int J Syst Evol Microbiol64:594–598 [CrossRef][PubMed]
    [Google Scholar]
  27. Liu Z. P., Wang B. J., Liu Y. H., Liu S. J.. 2005; Novosphingobium taihuense sp. nov., a novel aromatic-compound-degrading bacterium isolated from Taihu Lake, China. Int J Syst Evol Microbiol55:1229–1232 [CrossRef][PubMed]
    [Google Scholar]
  28. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  29. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  30. Niharika N., Moskalikova H., Kaur J., Sedlackova M., Hampl A., Damborsky J., Prokop Z., Lal R.. 2013; Novosphingobium barchaimii sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol63:667–672 [CrossRef][PubMed]
    [Google Scholar]
  31. Pitcher D. G., Saunders N. A., Owen R. J.. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol8:151–156 [CrossRef]
    [Google Scholar]
  32. Rohde M.. 2011; Microscopy. In Methods in Microbiology, 1st edn.vol. 38 pp61–100 Edited by Rainey F., Oren A.. Oxford, UK: Academic Press;
    [Google Scholar]
  33. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  34. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  35. Sheu S. Y., Chen Z. H., Chen W. M.. 2016; Novosphingobium piscinae sp. nov., isolated from a fish culture pond. Int J Syst Evol Microbiol66:1539–1545 [CrossRef][PubMed]
    [Google Scholar]
  36. Sierra G.. 1957; A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie Van Leeuwenhoek23:15–22 [CrossRef][PubMed]
    [Google Scholar]
  37. Suzuki S., Hiraishi A.. 2007; Novosphingobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from polychlorinated-dioxin-contaminated environments. J Gen Appl Microbiol53:221–228 [CrossRef][PubMed]
    [Google Scholar]
  38. Takeuchi M., Hamana K., Hiraishi A.. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol51:1405–1417 [CrossRef][PubMed]
    [Google Scholar]
  39. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  40. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  41. Tschech A., Pfennig N.. 1984; Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol137:163–167 [CrossRef]
    [Google Scholar]
  42. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moor L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464[CrossRef]
    [Google Scholar]
  43. Wheater D. M.. 1955; The characteristics of Lactobacillus acidophilus and Lactobacillus bulgaricus. J Gen Microbiol12:123–132 [CrossRef][PubMed]
    [Google Scholar]
  44. Widdel F., Kohring G.-W., Mayer F.. 1983; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids III characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol134:286–294[CrossRef]
    [Google Scholar]
  45. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H.. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol34:99–119 [CrossRef][PubMed]
    [Google Scholar]
  46. Yuan J., Lai Q., Zheng T., Shao Z.. 2009; Novosphingobium indicum sp. nov a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. Int J Syst Evol Microbiol59:2084–2088[CrossRef]
    [Google Scholar]
  47. Zhang L., Gao J. S., Kim S. G., Zhang C. W., Jiang J. Q., Ma X. T., Zhang J., Zhang X. X.. 2016; Novosphingobium oryzae sp. nov., a potential plant-promoting endophytic bacterium isolated from rice roots. Int J Syst Evol Microbiol66:302–307 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001242
Loading
/content/journal/ijsem/10.1099/ijsem.0.001242
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error