1887

Abstract

A novel Gram-staining-positive, aerobic, non-motile and coccus-shaped bacterium, designated strain TBS-100, was isolated from the faeces of a crested ibis, . The phylogenetic analysis based on the 16S rRNA gene sequences showed that the closest relative of TBS-100 was DSM 24460 with 97.11 % sequence similarity, and that strain TBS-100 belonged to the genus . The optimum growth conditions for strain TBS-100 were 30 °C, at a pH of 7 and in the presence of 0 % (w/v) NaCl. The primary cellular fatty acids of strain TBS-100 were anteiso-C and iso-C. The predominant isoprenoid quinones were MK-8 (H) (70.2 %) and MK-8 (H) (29.7 %). The polar lipids were diphosphatidylglycerol, phosphatidylinositol, seven unidentified lipids and an unidentified phospholipid. The whole-cell sugars of strain TBS-100 were ribose, glucose, galactose, rhamnose and mannose. The peptidoglycan contained alanine, lysine, glutamic acid, glycine and aspartic acid. The DNA G+C content was 64.8 mol%. The phenotypic, phylogenetic and genotypic analyses indicated that strain TBS-100 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is TBS-100 (=KCTC 39625=JCM 31200). In addition, an emended description of the genus is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001238
2016-09-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3594.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001238&mimeType=html&fmt=ahah

References

  1. Anzai K., Sugiyama T., Sukisaki M., Sakiyama Y., Otoguro M., Ando K.. 2011; Flexivirga alba gen. nov., sp. nov., an actinobacterial taxon in the family Dermacoccaceae. J Antibiot (Tokyo)64:613–616 [CrossRef][PubMed]
    [Google Scholar]
  2. Ara I., Yamamura H., Tsetseg B., Daram D., Ando K.. 2010; Luteipulveratus mongoliensis gen. nov., sp. nov., an actinobacterial taxon in the familyDermacoccaceae. Int J Syst Evol Microbiol60:574–579 [CrossRef][PubMed]
    [Google Scholar]
  3. Bae J.-W., Rhee S.-K., Nam Y.-D., Park Y.-H.. 2005; Generation of subspecies level-specific microbial diagnostic microarrays using genes amplified from subtractive suppression hybridization as microarray probes. Nucleic Acids Res33:e113e113 [CrossRef][PubMed]
    [Google Scholar]
  4. Bae J.-W., Park Y.-H.. 2006; Homogeneous versus heterogeneous probes for microbial ecological microarrays. Trends Biotechnol24:318–323 [CrossRef][PubMed]
    [Google Scholar]
  5. Bousfield G. R., Sugino H., Ward D. N.. 1985; Demonstration of a COOH-terminal extension on equine lutropin by means of a common acid-labile bond in equine lutropin and equine chorionic gonadotropin. J Biol Chem260:9531–9533[PubMed]
    [Google Scholar]
  6. Chang H.-W., Sung Y., Kim K.-H., Nam Y.-D., Roh S. W., Kim M.-S., Jeon C. O., Bae J.-W.. 2008; Development of microbial genome- probing microarrays using digital multiple displacement amplification of uncultivated microbial single cells. Environ Sci Technol42:6058–6064 [CrossRef][PubMed]
    [Google Scholar]
  7. Collins M. D., Jones D.. 1981; A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol51:129–134 [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  9. Gonzalez J. M., Saiz-Jimenez C.. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol4:770–773[PubMed][CrossRef]
    [Google Scholar]
  10. Hyun D.-W., Kim J. Y., Kim M.-S., Shin N.-R., Kim H. S., Lee J.-Y., Bae J.-W.. 2015; Actibacter haliotis sp. nov., isolated from the gut of an abalone, Haliotis discus hannai, and emended description of the genus Actibacter. Int J Syst Evol Microbiol65:49–55 [CrossRef][PubMed]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim P. S., Shin N.-R., Kim J. Y., Yun J.-H., Hyun D.-W., Bae J.-W.. 2013a; Gibbsiella papilionis sp. nov., isolated from the intestinal tract of the butterfly Mycalesis gotama, and emended description of the genus Gibbsiella. Int J Syst Evol Microbiol63:2607–2611 [CrossRef]
    [Google Scholar]
  13. Kim S.-J., Jang Y.-H., Ahn J.-H., Weon H.-Y., Schumann P., Chun S.-C., Kwon S.-W., Kim W.-G.. 2013b; Rudaeicoccus suwonensis gen. nov., sp. nov., an actinobacterium isolated from the epidermal tissue of a root of a Phalaenopsis orchid. Int J Syst Evol Microbiol63:1291–1296 [CrossRef][PubMed]
    [Google Scholar]
  14. Kluge A. G., Farris F. S.. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool18:1–32 [CrossRef]
    [Google Scholar]
  15. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp.115–175 Edited by Stackebrandt E., Goodfellow M.. New York: Wiley;
    [Google Scholar]
  16. Li X., Tian H., Li D.. 2009; Why the crested ibis declined in the middle twentieth century. Biodivers Conserv18:2165–2172 [CrossRef]
    [Google Scholar]
  17. Loy A., Schulz C., Lücker S., Schöpfer-Wendels A., Stoecker K., Baranyi C., Lehner A., Wagner M.. 2005; 16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order ‘ Rhodocyclales’. Appl Environ Microbiol71:1373–1386 [CrossRef][PubMed]
    [Google Scholar]
  18. MIDI 1999; Sherlock Microbial Identification System Operating Manual, Version 3.0 Newark, DE: MIDI, Inc;
    [Google Scholar]
  19. Rochelle P. A., Fry J. C., John Parkes R., Weightman A. J.. 1992; DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol Lett79:59–65 [CrossRef]
    [Google Scholar]
  20. Ruckmani A., Kaur I., Schumann P., Klenk H. P., Mayilraj S.. 2011; Calidifontibacter indicus gen. nov., sp. nov., a member of the family Dermacoccaceae isolated from a hot spring, and emended description of the familyDermacoccaceae. Int J Syst Evol Microbiol61:2419–2424 [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  22. Sasser M.. 1990; Identificationof bacteria by gas chromatography of cellular fatty acids: MIDI Technical Note 101 Newark, DE: MIDI;
    [Google Scholar]
  23. Schön R., Groth I.. 2006; Practical thin layer chromatography techniques for diaminopimelic acid and whole cell sugar analyses in the classification of environmental actinomycetes. J Basic Microbiol46:243–249 [CrossRef][PubMed]
    [Google Scholar]
  24. Schleifer K. H., Kandler O.. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev36:407[PubMed]
    [Google Scholar]
  25. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  26. Tang S.-K., Wu J.-Y., Wang Y., Schumann P., Li W.-J.. 2010; Yimella lutea gen. nov., sp. nov., a novel actinobacterium of the familyDermacoccaceae. Int J Syst Evol Microbiol60:659–663 [CrossRef][PubMed]
    [Google Scholar]
  27. Tindall B. J.. 1990; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  28. Tittsler R. P., Sandholzer L. A.. 1936; The use of semi-solid agar for the detection of bacterial motility. J Bacteriol31:575–580[PubMed]
    [Google Scholar]
  29. Wayne L. G., Brenner D. J, Colwell R. R. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  30. Xi Y., Wood C., Lu B., Zhang Y.. 2007; Prevalence of a septicemia disease in the crested ibis (Nipponia nippon) in China. Avian Dis51:614–617 [CrossRef][PubMed]
    [Google Scholar]
  31. Xin H., Itoh T., Zhou P., Suzuki K., Kamekura M., Nakase T.. 2000; Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol50:1297–1303 [CrossRef][PubMed]
    [Google Scholar]
  32. Zhang B., Fang S.-G., Xi Y.-M.. 2004; Low genetic diversity in the endangered crested ibis Nipponia nippon and implications for conservation. Bird Conserv Int14:183–190 [CrossRef]
    [Google Scholar]
  33. Zhang B., Fang S.-G., Xi Y.-M.. 2006; Major histocompatibility complex variation in the endangered crested ibis Nipponia nippon and implications for reintroduction. Biochem Genet44:110–120 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001238
Loading
/content/journal/ijsem/10.1099/ijsem.0.001238
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error