1887

Abstract

The taxonomy of strain 1DS3-10, a Gram-staining-positive, endospore-forming bacterium isolated from rice rhizosphere, was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that the novel strain was grouped with established members of the genus and appeared to be closely related to the type strains DSM 5391 (97.9 %), DSM 11 (97.7 %), JCM 21709 (97.3 %), JCM 21710 (97.3 %), CGMCC 1.10115 (97.3 %) and FO-92 (97.1 %). The fatty acid profile of strain 1DS3-10, which showed a predominance of iso-C and anteiso-C, supported the allocation of the strain to the genus . The predominant menaquinone was MK-7 (100 %). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unknown aminolipids. Cell-wall peptidoglycan contained -diaminopimelic acid. DNA–DNA hybridization values between strain 1DS3-10 and the type strains of closely related species were 25–33 %, which supported that 1DS3-10 represented a novel species in the genus . The results of some physiological and biochemical tests also allowed the phenotypic differentiation of strain 1DS3-10 from the most closely related recognized species. On the basis of the phylogenetic and phenotypic evidence, strain 1DS3-10 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain of the novel species is 1DS3-10 (=ACCC 19781=DSM 29761).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001215
2016-09-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3432.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001215&mimeType=html&fmt=ahah

References

  1. Bibi F., Chung E. J., Jeon C. O., Chung Y. R.. 2011; Bacillus graminis sp. nov., an endophyte isolated from a coastal dune plant. Int J Syst Evol Microbiol61:1567–1571 [CrossRef][PubMed]
    [Google Scholar]
  2. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  3. Dong X. Z., Cai M. Y.. (editors) ( 2001; Determination of Biochemical Properties. in Manual for the Systematic Identification of General Bacteria, pp.370–398 Beijing: Science Press (in Chinese);
    [Google Scholar]
  4. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  6. Heyrman J., Vanparys B., Logan N. A., Balcaen A., Rodríguez-Díaz M., Felske A., De Vos P.. 2004; Bacillus novalis sp. nov.,Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int J Syst Evol Microbiol54:47–57 [CrossRef][PubMed]
    [Google Scholar]
  7. Huss V. A., Festl H., Schleifer K. H., Schleifer K. H.. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  8. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  9. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H. J., Tindall B. J.. 2006; Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol56:781–786 [CrossRef][PubMed]
    [Google Scholar]
  10. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp.115–175 . Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  11. Lechevalier M. P., Lechevalier H. A.. 1980; The chemotaxonomy of actinomycetes. In Actinomycete Taxonomy, Special Publicationvol. 6 pp.227–291 . Edited by Dietz A., Thayer D. W.. Arlington, VA: Society for Industrial Microbiology;
    [Google Scholar]
  12. Lin S. Y., Hameed A., Liu Y. C., Wen C. Z., Lai W. A., Hsu Y. H., Young C. C.. 2015; Bacillus lycopersici sp. nov., isolated from a tomato plant (Solanum lycopersicum L.). Int J Syst Evol Microbiol65:2085–2090 [CrossRef][PubMed]
    [Google Scholar]
  13. Liu B., Liu G. H., Sengonca C., Schumann P., Che J. M., Zhu Y. J., Wang J. P.. 2015; Bacillus wuyishanensis sp. nov., isolated from rhizosphere soil of a medical plant, Prunella vulgaris. Int J Syst Evol Microbiol65:2030–2035 [CrossRef][PubMed]
    [Google Scholar]
  14. Logan N. A., De Vos P.. 2009; Genus I. Bacillus Cohn 1872, 174 AL. In Bergey's Manual of Systematic Bacteriology (The Firmicutes), 2nd edn.vol. 3 pp.21–127 Edited by Garrity G. M., Brenner D. J., Krieg N. R., Staley J. R.. New York: Springer:
    [Google Scholar]
  15. Madhaiyan M., Poonguzhali S., Kwon S. W., Sa T. M.. 2010; Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. Int J Syst Evol Microbiol60:2490–2495 [CrossRef][PubMed]
    [Google Scholar]
  16. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol3:208–218 [CrossRef]
    [Google Scholar]
  17. Marmur J., Doty P.. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  18. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  19. Nei M., Kumar S.. 2000; Molecular Evolution and Phylogenetics New York: Oxford University Press;
    [Google Scholar]
  20. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  21. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  22. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol37:463–464[CrossRef]
    [Google Scholar]
  24. Zhang J., Wang J., Fang C., Song F., Xin Y., Qu L., Ding K.. 2010; Bacillus oceanisediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol60:2924–2929 [CrossRef][PubMed]
    [Google Scholar]
  25. Zhou Y., Xu J., Xu L., Tindall B. J.. 2009; Falsibacillus pallidus to replace the homonym Bacillus pallidus Zhou et al. 2008. Int J Syst Evol Microbiol59:3176–3180 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001215
Loading
/content/journal/ijsem/10.1099/ijsem.0.001215
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error