1887

Abstract

A Gram-stain-negative, rod-shaped, motile, endospore-forming, facultatively anaerobic bacterium, designated strain L14, was isolated from the traditional acetic acid fermentation culture of Chinese cereal vinegars. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain L14 was affiliated to the genus Paenibacillus , most closely related to Paenibacillus motobuensis MC10 with 97.8 % similarity. Chemotaxonomic characterization supported the allocation of the strain to the genus Paenibacillus . The polar lipid profile of strain L14 contained the major compounds diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The predominant menaquinone was MK-7, and the major fatty acid components were anteiso-C15 : 0, iso-C15 : 0 and C16 : 0. The DNA G+C content of strain L14 was 49.9 mol%. The DNA–DNA relatedness value between strain L14 and P. motobuensis MC10 was 51.2 %. The results of physiological and biochemical tests allowed phenotypic differentiation of strain L14 from closely related species. On the basis of phenotypic and chemotaxonomic analyses, phylogenetic analysis and DNA–DNA relatedness values, strain L14 is considered to represent a novel species of the genus Paenibacillus , for which the name Paenibacillus aceti sp. nov. is proposed. The type strain is L14 (=CGMCC 1.15420=JCM 31170).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001214
2016-09-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3426.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001214&mimeType=html&fmt=ahah

References

  1. Adékambi T., Shinnick T. M., Raoult D., Drancourt M..( 2008;). Complete rpoB gene sequencing as a suitable supplement to DNA-DNA hybridization for bacterial species and genus delineation. . Int J Syst Evol Microbiol 58: 1807–1814. [CrossRef] [PubMed]
    [Google Scholar]
  2. Akaracharanya A., Lorliam W., Tanasupawat S., Lee K. C., Lee J. S..( 2009;). Paenibacillus cellulositrophicus sp. nov., a cellulolytic bacterium from Thai soil. . Int J Syst Evol Microbiol 59: 2680–2684. [CrossRef] [PubMed]
    [Google Scholar]
  3. Ash C., Priest F. G., Collins M. D..( 1993;). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. proposal for the creation of a new genus Paenibacillus. . Antonie Van Leeuwenhoek 64: 253–260. [CrossRef] [PubMed]
    [Google Scholar]
  4. Collins M. D..( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minnikin D. E.. London:: Academic Press;.
    [Google Scholar]
  5. Dahllöf I., Baillie H., Kjelleberg S..( 2000;). rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. . Appl Environ Microb 66: 3376–3380.[CrossRef]
    [Google Scholar]
  6. Gordon R. E., Haynes W. C., Pang C. H.-N..( 1989;). The Genus Bacillus . Agriculture Handbook no. 427. Washington, DC:: Agricultural Research Service;.
    [Google Scholar]
  7. Iida K., Ueda Y., Kawamura Y., Ezaki T., Takade A., Yoshida S., Amako K..( 2005;). Paenibacillus motobuensis sp. nov., isolated from a composting machine utilizing soil from Motobu-town, Okinawa, Japan. . Int J Syst Evol Microbiol 55: 1811–1816. [CrossRef] [PubMed]
    [Google Scholar]
  8. Jiang B., Zhao X., Liu J., Fu L., Yang C., Hu X..( 2015;). Paenibacillus shenyangensis sp. nov., a bioflocculant-producing species isolated from soil under a peach tree. . Int J Syst Evol Microbiol 65: 220–224. [CrossRef] [PubMed]
    [Google Scholar]
  9. Komagata K., Suzuki K.-I..( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19: 161–207.[CrossRef]
    [Google Scholar]
  10. Lane D. J..( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. Chichester:: Wiley;.
    [Google Scholar]
  11. Li J., Lu Q., Liu T., Zhou S., Yang G., Zhao Y..( 2014;). Paenibacillus guangzhouensis sp. nov., an Fe(III)- and humus-reducing bacterium from a forest soil. . Int J Syst Evol Microbiol 64: 3891–3896. [CrossRef] [PubMed]
    [Google Scholar]
  12. Logan N. A., De Clerck E., Lebbe L., Verhelst A., Goris J., Forsyth G., Rodríguez-Díaz M., Heyndrickx M., De Vos P..( 2004;). Paenibacillus cineris sp. nov. and Paenibacillus cookii sp. nov. from Antarctic Volcanic Soils and a Gelatin-Processing Plant. . Int J Syst Evol Microbiol 54: 1071–1076.[CrossRef]
    [Google Scholar]
  13. Meehan C., Bjourson A. J., McMullan G..( 2001;). Paenibacillus azoreducens sp. nov., a synthetic azo dye decolorizing bacterium from industrial wastewater. . Int J Syst Evol Microbiol 51: 1681–1685. [CrossRef] [PubMed]
    [Google Scholar]
  14. Rhodes-Roberts M..( 1981;). The taxonomy of some nitrogen-fixing Bacillus species with special reference to nitrogen fixation. . In The Aerobic Endospore-Forming Bacteria. Classification and Identification , pp. 315–335. Edited by Berkeley R. C. W., Goodfellow M.. London:: Academic Press;.
    [Google Scholar]
  15. Rivas R., Gutiérrez C., Abril A., Mateos P. F., Martínez-Molina E., Ventosa A., Velázquez E..( 2005;). Paenibacillus rhizosphaerae sp. nov., isolated from the Rhizosphere of Cicer Arietinum. . Int J Syst Evol Microbiol 55: 1305–1309. [CrossRef] [PubMed]
    [Google Scholar]
  16. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K..( 1997;). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. . Int J Syst Evol Microbiol 47: 289–298.
    [Google Scholar]
  17. Smibert R. M., Krieg N. R..( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  18. Stackebrandt E., Goebel B. M..( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44: 846–849. [CrossRef]
    [Google Scholar]
  19. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swings J. et al.( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52: 1043–1047. [CrossRef] [PubMed]
    [Google Scholar]
  20. Tamaoka J., Komagata K..( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25: 125–128. [CrossRef]
    [Google Scholar]
  21. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  22. Thompson J. D., Higgins D. G., Gibson T. J..( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22: 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  23. Tiago I., Pires C., Mendes V., Morais P. V., da Costa M. S., Veríssimo A..( 2006;). Bacillus foraminis sp. nov., isolated from a non-saline alkaline groundwater. . Int J Syst Evol Microbiol 56: 2571–2574. [CrossRef] [PubMed]
    [Google Scholar]
  24. Traiwan J., Park M. H., Kim W..( 2011;). Paenibacillus puldeungensis sp. nov., isolated from a grassy sandbank. . Int J Syst Evol Microbiol 61: 670–673. [CrossRef] [PubMed]
    [Google Scholar]
  25. Velázquez E., de Miguel T., Poza M., Rivas R., Rosselló-Mora R., Villa T. G..( 2004;). Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces. . Int J Syst Evol Microbiol 54: 59–64. [CrossRef] [PubMed]
    [Google Scholar]
  26. Wu J. J., Ma Y. K., Zhang F. F., Chen F. S..( 2012;). Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of “Shanxi aged vinegar”, a traditional Chinese vinegar. . Food Microbiol 30: 289–297. [CrossRef] [PubMed]
    [Google Scholar]
  27. Xie C. H., Yokota A..( 2003;). Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. . J Gen Appl Microbiol 49: 345–349.[PubMed] [CrossRef]
    [Google Scholar]
  28. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H..( 1996;). Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. . Int J Syst Bacteriol 46: 502–505.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001214
Loading
/content/journal/ijsem/10.1099/ijsem.0.001214
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error