1887

Abstract

A novel bacterial strain, SR79, was isolated from a Korean faecal sample and characterized using a polyphasic approach. SR79 was found to be a strictly anaerobic, Gram-stain-positive, non-spore-forming, non-motile, catalase- and oxidase-negative short rod with no flagella. SR79 grew optimally at 37 °C in the presence of 0.5 % (w/v) NaCl at pH 7. The NaCl range for growth was 0–1 % (w/v). The isolate produced butyric acid (>18  mM) as a major end product. A phylogenetic analysis based on 16S rRNA gene sequences revealed that the most closely related type strains were ATCC 43058 and 25-3 (96.4 and 96.0 % similarity, respectively). The DNA G+C content was determined to be 52.9 mol%. The major cellular fatty acids (>10 %) were C, C -9, C cyc 9,10 and C. -diaminopimelic acid was present in the cell wall peptidoglycan and the cell wall hydrolysates contained ribose, glucose and galactose. The 16S rRNA gene sequence similarity, phylogenetic analysis, chemotaxonomic and phenotypic characteristics allowed differentiation of SR79, which represents a novel species of a new genus within the family , for which the name gen. nov. sp. nov. is proposed. The type strain is SR79 (=KCTC 15532=DSM 100391). Based on the results of this study, it is also proposed to transfer to this new genus, as comb. nov. The type strain of is ATCC 43058 (=CCUG 27818).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001195
2016-09-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3656.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001195&mimeType=html&fmt=ahah

References

  1. Bang B. H., Rhee M. S., Chang D. H., Park D. S., Kim B. C.. 2015; Erysipelothrix larvae sp. nov., isolated from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae). Antonie Van Leeuwenhoek107:443–451 [CrossRef][PubMed]
    [Google Scholar]
  2. Brahe L. K., Astrup A., Larsen L. H.. 2013; Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases?. Obes Rev14:950–959 [CrossRef][PubMed]
    [Google Scholar]
  3. Chang D. H., Rhee M. S., Ahn S., Bang B. H., Oh J. E., Lee H. K., Kim B. C.. 2015; Faecalibaculum rodentium gen. nov., sp. nov., isolated from the faeces of a laboratory mouse. Antonie Van Leeuwenhoek108:1309–1318 [CrossRef][PubMed]
    [Google Scholar]
  4. Chang D. H., Rhee M. S., Kim B. C.. 2016; Dermabacter vaginalis sp. nov., isolated from human vaginal fluid. Int J Syst Evol Microbiol66:1881–1886[CrossRef]
    [Google Scholar]
  5. Eeckhaut V., Van Immerseel F., Teirlynck E., Pasmans F., Fievez V., Snauwaert C., Haesebrouck F., Ducatelle R., Louis P., Vandamme P.. 2008; Butyricicoccus pullicaecorum gen. nov., sp. nov., an anaerobic, butyrate-producing bacterium isolated from the caecal content of a broiler chicken. Int J Syst Bacteriol58:2799–2802 [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. 1985; Confidence limit on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  8. Judicial Commission of the International Committee on Systematic Bacteriology 1983; Opinion 57. Designation of Eubacterium limosum (Eggerth) Prévot 1938 as the type species of Eubacterium. Int J Syst Bacteriol33:434[CrossRef]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  10. Lee W. J., Hase K.. 2014; Gut microbiota-generated metabolites in animal health and disease. Nat Chem Biol10:416–424 [CrossRef][PubMed]
    [Google Scholar]
  11. Lee G. H., Rhee M. S., Chang D. H., Lee J., Kim S., Yoon M. H., Kim B. C.. 2013a; Oscillibacter ruminantium sp. nov., isolated from the rumen of Korean native cattle. Int J Syst Evol Microbiol63:1942–1946 [CrossRef]
    [Google Scholar]
  12. Lee J. H., Kumar S., Lee G. H., Chang D. H., Rhee M. S., Yoon M. H., Kim B. C.. 2013b; Methanobrevibacter boviskoreani sp. nov., isolated from the rumen of Korean native cattle. Int J Syst Evol Microbiol63:4196–4201 [CrossRef]
    [Google Scholar]
  13. Lee G. H., Rhee M. S., Chang D. H., Kwon K. K., Bae K. S., Yang S. H., Kim B. C.. 2014; Bacillus solimangrovi sp. nov., isolated from mangrove soil. Nat Chem Biol64:1622–1628
    [Google Scholar]
  14. Louis P., Flint H. J.. 2009; Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett294:1–8 [CrossRef][PubMed]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  16. Morris G. N., Winter J., Cato E. P., Ritchie A. E., Bokkenheuser V. D.. 1986; Eubacterium desmolans sp. nov., a steroid desmolase-producing species from cat fecal flora. Int J Syst Bacteriol36:183–186 [CrossRef]
    [Google Scholar]
  17. Nakagawa Y., Yamasato K.. 1993; Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol139:1155–1161 [CrossRef][PubMed]
    [Google Scholar]
  18. Prévot A. R.. 1938; Étudesde systématique bacteriénne: III. Invalidé du gendre Bacteroides Castellani et Chalmers démembrement et reclassification. Ann Inst Pasteur20:285–307
    [Google Scholar]
  19. Rhuland L. E., Work E., Denman R. F., Hoare D. S.. 1955; The behavior of the isomers of diaminopimelic acid on paper chromatograms. J Am Chem Soc77:4844–4846 [CrossRef]
    [Google Scholar]
  20. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  21. Schleifer K. H., Kandler O.. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev36:407–477[PubMed]
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  23. The Human Microbiome Project Consortium 2012; Structure, function and diversity of the healthy human microbiome. Nature486:207–214 [CrossRef][PubMed]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  25. Tremaroli V., Bäckhed F.. 2012; Functional interactions between the gut microbiota and host metabolism. Nature489:242–249 [CrossRef][PubMed]
    [Google Scholar]
  26. Wade W. G.. 2009; Genus Eubacterium. In Bergey’s Manual of Systematic Bacteriology, vol. 3, The Firmicutes , pp.865–891 Edited by Whitman W. B.. Dordrecht, Heidelberg, London, New, York: Springer;
    [Google Scholar]
  27. Zillig W., Holz I., Janekovic D., Klenk H. P., Imsel E., Trent J., Wunderl S., Forjaz V. H., Coutinho R., Ferreira T.. 1990; Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol172:3959–3965[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001195
Loading
/content/journal/ijsem/10.1099/ijsem.0.001195
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error