1887

Abstract

A novel Gram-reaction-positive, non-motile and facultatively anaerobic bacterium, designated strain S01, was isolated from a nutrient agar plate kept on a laboratory clean bench at Guangdong Institute of Microbiology, PR China, which was contaminated from an unknown source. Strain S01 was found to be catalase-positive and oxidase-negative. Similarity searches revealed that the strain shared the highest 16S rRNA gene similarity with Corynebacterium humireducens MFC-5 (95.9 %). However, phylogenetic analysis based on the 16S rRNA gene sequences showed that strain S01 was closely related to Corynebacterium doosanense JCM 17317 (94.8 %) and Corynebacterium maris JCM 17018(94.8 %). The major fatty acids were C18:1ω9c, C16:0, 10-methyl C18:0 and C18:0. The respiratory quinones predominantly consisted of MK-8(H2), with small amounts of MK-8 and MK-9(H2). Polar lipids contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, an unidentified aminolipid, two unidentified glycolipids and two unidentified lipids. Mycolic acids were present. The cell-wall peptidoglycan contained meso-diaminopimelic acid and the major cell-wall sugars were galactose, arabinose and glucose. The genomic DNA G+C content of strain S01 was 70.7±0.1 mol%. The results of phenotypic, phylogenetic and chemotaxonomic analyses indicated that strain S01 represents a novel species of the genus Corynebacterium , for which the name Corynebacterium guangdongense sp. nov. is proposed. The type strain is S01 (=GDMCC 1.1022=CCTCC AB 2015423=KCTC 39608).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001177
2016-08-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3201.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001177&mimeType=html&fmt=ahah

References

  1. Ben-Dov E., Ben Yosef D. Z., Pavlov V., Kushmaro A.. 2009; Corynebacterium maris sp. nov., a marine bacterium isolated from the mucus of the coral Fungia granulosa . Int J Syst Evol Microbiol59:2458–2463 [CrossRef][PubMed]
    [Google Scholar]
  2. Bernard K. A., Funke G.. 2012; Genus Corynebacterium . In Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 5 pp.245–289 Edited by Goodfellow M., Kämpfer P., Busse H. J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B.. New York: Springer;
    [Google Scholar]
  3. Bertani G.. 1951; Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli . J Bacteriol62:293–300[PubMed]
    [Google Scholar]
  4. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  6. Fernández-Garayzábal J. F., Vela A. I., Egido R., Hutson R. A., Lanzarot M. P., Fernández-García M., Collins M. D.. 2004; Corynebacterium ciconiae sp. nov., isolated from the trachea of black storks (Ciconia nigra). Int J Syst Evol Microbiol54:2191–2195 [CrossRef][PubMed]
    [Google Scholar]
  7. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  8. Frischmann A., Knoll A., Hilbert F., Zasada A. A., Kämpfer P., Busse H. J.. 2012; Corynebacterium epidermidicanis sp. nov., isolated from skin of a dog. Int J Syst Evol Microbiol62:2194–2200 [CrossRef][PubMed]
    [Google Scholar]
  9. Hiraishi A., Ueda Y., Ishihara J., Mori T.. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol42:457–469 [CrossRef]
    [Google Scholar]
  10. Kämpfer P., Jerzak L., Wilharm G., Golke J., Busse H. J., Glaeser S. P.. 2015; Description of Corynebacterium trachiae sp. nov., isolated from a white stork (Ciconia ciconia). Int J Syst Evol Microbiol65:784–788 [CrossRef][PubMed]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim M., Oh H. S., Park S. C., Chun J.. 2014; Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  13. Kim P. S., Shin N. R., Hyun D. W., Kim J. Y., Whon T. W., Oh S. J., Bae J. W.. 2015; Corynebacterium atrinae sp. nov., isolated from the gastrointestinal tract of a pen shell, Atrina pectinata . Int J Syst Evol Microbiol65:531–536 [CrossRef][PubMed]
    [Google Scholar]
  14. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  15. Lee H. J., Cho S. L., Jung M. Y., Van Nguyen T. H., Jung Y. C., Park H. K., Le V. P., Kim W.. 2009; Corynebacterium doosanense sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol59:2734–2737 [CrossRef][PubMed]
    [Google Scholar]
  16. Lehmann K. B., Neumann R.. 1896; Atlas Und Grundriss Der Bakteriologie Und Lehrbuch Der Speziellen Bakteriologischen Diagnostik Munich: J. F. Lehmann;
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  18. Otsuka Y., Kawamura Y., Koyama T., Iihara H., Ohkusu K., Ezaki T.. 2005; Corynebacterium resistens sp. nov., a new multidrug-resistant coryneform bacterium isolated from human infections. J Clin Microbiol43:3713–3717 [CrossRef][PubMed]
    [Google Scholar]
  19. Riegel P., Creti R., Mattei R., Nieri A., von Hunolstein C.. 2006; Isolation of Corynebacterium tuscaniae sp. nov from blood cultures of a patient with endocarditis. J Clin Microbiol44:307–312[CrossRef]
    [Google Scholar]
  20. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  21. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  22. Schleifer K. H., Kandler O.. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev36:407–477[PubMed]
    [Google Scholar]
  23. Schön R., Groth I.. 2006; Practical thin layer chromatography techniques for diaminopimelic acid and whole cell sugar analyses in the classification of environmental actinomycetes. J Basic Microbiol46:243–249 [CrossRef][PubMed]
    [Google Scholar]
  24. Schumann P.. 2011; Peptidoglycan structure. In Taxonomy of Prokaryotes, Methods in Microbiologyvol. 38 pp.101–129 Edited by Rainey F., Oren A.. London: Academic Press;[CrossRef]
    [Google Scholar]
  25. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849 [CrossRef]
    [Google Scholar]
  26. Stackebrandt E., Ebers J.. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today33:152–155
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  28. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology365 pp.384–385 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.. Washington DC: American Society for Microbiology;
    [Google Scholar]
  29. van der Linde K., Lim B. T., Rondeel J. M., Antonissen L. P., de Jong G. M.. 1999; Improved bacteriological surveillance of haemodialysis fluids: a comparison between tryptic soy agar and Reasoner's 2A media. Nephrol Dial Transplant14:2433–2437 [CrossRef][PubMed]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O, Krichevsky M., Moore L. H., Moore W. E. C., Moore R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  31. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
  32. Wiertz R., Schulz S. C., Müller U., Kämpfer P., Lipski A.. 2013; Corynebacterium frankenforstense sp. nov. and Corynebacterium lactis sp. nov., isolated from raw cow milk. Int J Syst Evol Microbiol63:4495–4501 [CrossRef][PubMed]
    [Google Scholar]
  33. Yarza P., Yilmaz P., Pruesse E., Glöckner F. O., Ludwig W., Schleifer K. H., Whitman W. B., Euzéby J., Amann R. et al. 2014; Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol12:635–645 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001177
Loading
/content/journal/ijsem/10.1099/ijsem.0.001177
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error