1887

Abstract

A Gram-stain-negative, non-endospore-forming, strictly aerobic, irregular rod-shaped bacterium without flagellum, designated strain H94, was isolated by the high-throughput cultivation method from seawater of an amphioxus breeding zone in the coastal region of Qingdao, China. Growth was observed at 4–37 °C (optimum 28 °C), at pH 6.0–10.0 (optimum pH 7.0) and in the presence of 1–12 % (w/v) NaCl (optimum 1–2 %). The predominant cellular fatty acids were C 9, C and C 9. The polar lipids comprised phosphatidylethanolamine, phosphatidylglycerol and an unidentified phosphoglycolipid. The major respiratory quinone was ubiquinone-9 (Q-9). The genomic DNA G+C content of strain H94 was 56.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain H94 shared the highest similarity (95.9 %) with NBRC 102683, and exhibited 92.9 % and 92.1 % similarity with the two other recognized species, KCTC 2396 and DSM 17046, respectively. The phylogenetic position revealed that strain H94 formed a stable distinct lineage cluster together with NBRC 102683 and this result was further confirmed by multilocus sequence analysis based on housekeeping genes and . On the basis of the polyphasic taxonomic analyses, strain H94 is considered to represent a novel species in a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is H94 (=CGMCC 1.10800=JCM 17555). It is also proposed that should be reclassified within the genus as comb. nov. (type strain NBRC 102683=IMCC 3113=KCCM 42675). The type species of the genus is comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001174
2016-08-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3207.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001174&mimeType=html&fmt=ahah

References

  1. Akselband Y., Cabral C., Castor T. P., Chikarmane H. M., McGrath P.. 2006; Enrichment of slow-growing marine microorganisms from mixed cultures using gel microdrop (GMD) growth assay and fluorescence-activated cell sorting. J Exp Mar Bio Ecol329:196–205 [CrossRef]
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. 1995; Short Protocols in Molecular Biology: A Compendium of Methods From Current Protocols in Molecular Biology, 3rd edn. New York: Wiley;
    [Google Scholar]
  3. Baik K. S., Seong C. N., Kim E. M., Yi H., Bae K. S., Chun J.. 2005; Hahella ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol55:681–684 [CrossRef][PubMed]
    [Google Scholar]
  4. Bernardet J. F., Nakagawa Y., Holmes B.. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  5. Breznak J. A., Costilow R. N.. 1994; Physicochemical factors in growth. In Methods for General and Molecular Bacteriology , pp.137–154 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Choi E. J., Kwon H. C., Sohn Y. C., Yang H. O.. 2010; Kistimonas asteriae gen. nov., sp. nov., a gammaproteobacterium isolated from Asterias amurensis. Int J Syst Evol Microbiol60:938–943 [CrossRef][PubMed]
    [Google Scholar]
  7. Collins M. D., Shah H. N.. 1984; Fatty acid, menaquinone and polar lipid composition of Rothia dentocariosa . Archives of Microbiology137:247–249 [CrossRef]
    [Google Scholar]
  8. Driscoll A. J., Bhat N., Karron R. A., O'Brien K. L., Murdoch D. R.. 2012; Disk diffusion bioassays for the detection of antibiotic activity in body fluids: applications for the Pneumonia etiology research for child health project. Clin Infect Dis54:S159–S164 [CrossRef][PubMed]
    [Google Scholar]
  9. Garrity G. M., Bell J. A., Lilburn T.. 2005; Family III. Hahellaceae fam. nov. In Bergey’s Manual of Systematic Bacteriology, 2rd edn.vol 2 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York: Springe;
    [Google Scholar]
  10. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  11. Hu Z. Y., Li Y.. 2007; Pseudidiomarina sediminum sp. nov., a marine bacterium isolated from coastal sediments of Luoyuan Bay in China. Int J Syst Evol Microbiol57:2572–2577 [CrossRef][PubMed]
    [Google Scholar]
  12. Jeong H., Yim J. H., Lee C., Choi S. H., Park Y. K., Yoon S. H., Hur C. C., Kang H. Y., Kim D. et al. 2005; Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent. Nucleic Acids Res33:7066–7073 [CrossRef][PubMed]
    [Google Scholar]
  13. Ji S. Q., Zhao R., Yin Q., Zhao Y., Liu C.-G., Xiao T., Zhang X.-H.. 2012; Gel microbead cultivation with a subenrichment procedure can yield better bacterial cultivability from a seawater sample than standard plating method. J Ocean Univ China11:45–51 [CrossRef]
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  15. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16: 111–120 [CrossRef][PubMed]
    [Google Scholar]
  16. Komagata K., Suzuki K.. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol19:1–207 [CrossRef][PubMed]
    [Google Scholar]
  17. Kurahashi M., Yokota A.. 2007; Endozoicomonas elysicola gen. nov., sp. nov., a g-proteobacterium isolated from the sea slug Elysia ornata. Syst Appl Microbiol30:202–206 [CrossRef][PubMed]
    [Google Scholar]
  18. Lalitha S.. 2000; Biotech Software & Internet Report. The Computer Software Journal for Scient1:270–272
    [Google Scholar]
  19. Lee H. K., Chun J., Moon E. Y., Ko S. H., Lee D. S., Lee H. S., Bae K. S.. 2001; Hahella chejuensis gen. nov., sp. nov., an extracellular-polysaccharide-producing marine bacterium. Int J Syst Evol Microbiol51:661–666 [CrossRef][PubMed]
    [Google Scholar]
  20. Lee K., Lee H. K., Cho J. C.. 2008; Hahella antarctica sp. nov., isolated from Antarctic seawater. Int J Syst Evol Microbiol58:353–356 [CrossRef][PubMed]
    [Google Scholar]
  21. Liu C., Shao Z.. 2005; Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol55:1181–1186 [CrossRef][PubMed]
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  23. Minnikin D., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  24. Montero-Calasanz M. C., Göker M., Rohde M., Spröer C., Schumann P., Busse H. J., Schmid M., Tindall B. J., Klenk H. P., Camacho M.. 2013; Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium . Int J Syst Evol Microbiol63:4386–4395 [CrossRef][PubMed]
    [Google Scholar]
  25. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  26. Sorokin D. Y., Tourova T. P., Galinski E. A., Belloch C., Tindall B. J.. 2006; Extremely halophilic denitrifying bacteria from hypersaline inland lakes, Halovibrio denitrificans sp. nov. and Halospina denitrificans gen. nov., sp. nov., and evidence that the genus name Halovibrio Fendrich 1989 with the type species Halovibrio variabilis should be associated with DSM 3050. Int J Syst Evol Microbiol56:379–388 [CrossRef][PubMed]
    [Google Scholar]
  27. Suzuki M. T., Rappé M. S., Haimberger Z. W., Winfield H., Adair N., Ströbel J. 1997; Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl Environ Microbiol63:983–989[PubMed]
    [Google Scholar]
  28. Tamura K., Dudley J., Nei M., Kumar S.. 2007; MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  29. Tatusova T., Ciufo S., Fedorov B., O’Neill K., Tolstoy I.. 2013; RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Researchgkt1274
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res24:4876–4882[CrossRef]
    [Google Scholar]
  31. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R.. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd edn. pp.330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
  33. Xie C. H., Yokota A.. 2003; Phylogenetic analyses of lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol49:345–349 [CrossRef][PubMed]
    [Google Scholar]
  34. Yi H., Chang Y. H., Oh H. W., Bae K. S., Chun J.. 2003; Zooshikella ganghwensis gen. nov., sp. nov., isolated from tidal flat sediments. Int J Syst Evol Microbiol53:1013–1018 [CrossRef][PubMed]
    [Google Scholar]
  35. Zeigler D. R.. 2003; Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol53:1893–1900 [CrossRef][PubMed]
    [Google Scholar]
  36. Zengler K., Toledo G., Rappé M., Elkins J., Mathur E. J., Short J. M., Keller M.. 2002; Cultivating the uncultured. Proc Natl Acad Sci USA26:15681–15686[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001174
Loading
/content/journal/ijsem/10.1099/ijsem.0.001174
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error